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Figure 1: LLM-powered programming assistance can resemble a repeating cycle of “prompt”-to-“code” (left), re-running

generation with every prompt change. Pail, our IDE (right) that helps users abstract up, pulls developers them towards a deeper

understanding of the problem space, helps them explore alternative problem formulations and solutions, and tracks design

goals and requirements, surfacing implicit decisions—but with a breadth and depth of information that can be overwhelming.

Abstract

In this work, we explore explicit Large Language Model (LLM)-

powered support for the iterative design of computer programs.

Program design, like other design activity, is characterized by navi-

gating a space of alternative problem formulations and associated

solutions in an iterative fashion. LLMs are potentially powerful tools

in helping this exploration; however, by default, code-generation

LLMs deliver code that represents a particular point solution. This

obscures the larger space of possible alternatives, many of which

might be preferable to the LLM’s default interpretation and its

generated code. We contribute an IDE that supports program de-

sign through generating and showing new ways to frame problems

alongside alternative solutions, tracking design decisions, and iden-

tifying implicit decisions made by either the programmer or the

LLM. In a user study, we find that with our IDE, users combine and
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parallelize design phases to explore a broader design space—but

also struggle to keep up with LLM-originated changes to code and

other information overload. These findings suggest a core challenge

for future IDEs that support program design through higher-level

instructions given to LLM-based agents: carefully managing at-

tention and deciding what information agents should surface to

program designers and when.
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1 Introduction

A common vision of future computer programming relies on Large

Language Models (LLMs) to do it all: identify requirements, write

code and tests, perform simulated QA testing, deploy, etc. We are

making rapid progress towards this vision on many fronts [1, 15, 20,

27, 57]. Yet, the role of the human in this process is under-explored.

In the predominant view, humans will be limited to setting an initial

goal, possibly clarifying a few questions asked, and then rating the

output. For some changes to the goal or generated code, the process

will restart from, approximately, scratch. Many versions of this

vision exist: some scale up the “autocomplete,” CoPilot-like [23]

interactions relying on recognition-over-recall [49], others scale up

the “chat” [1] or focus on providing point solutions [27].

While these visions best suit an understanding of program design

as starting with one known goal, program design in fact involves

a design process iterating on both the implementation details and

design goals. For instance, a journalist may begin an analysis with

the goal of assessing a relationship between two variables but then

in the process of exploring possible visualizations realize that one

of the variables has a lot of missing data. As a result, the journalist

can pivot to assess another pair of relationships or consider alterna-

tive visualizations and statistical analyses to triangulate the initial

relationship of interest. Similarly, a game creator faces questions of

narrative, characters, interactions. Even a straightforward backend

engineering task (e.g., storage system selection) requires considera-

tion of trade-offs (e.g., latency, consistency, scale) that ultimately

require refining the higher-level goals of the task (e.g., terms of a

latency service agreement).

Viewing programming as a design activity illuminates the hu-

man’s need for tighter iterative loops and more fine-grained control

than implied by the predominant vision. Design activity begins with

consideration of different problem formulations before solutions are

even discussed—as captured iconically by the Double Diamond (see,

e.g., [17]), which we adapt to illustrate our targeted capabilities, in

Figure 2. Designers test high-level hypotheses (e.g., around user

needs, or problem urgency) with sketches and prototypes before

expending engineering effort. All these explorations feed back into

a better understanding of the problem and solution design spaces—

but take time, and are often limited by human availability and cost.

Temptingly, LLMs promise a near-free pool of “cognitive resources”

that could in theory complement human cognition to improve the

experience of designing and programming interactive artifacts and

improve the final artifacts’ overall quality—by using LLMs to com-

plement human limitations on time and cost, and using humans

to overcome LLMs’ limitations on domain expertise and end-user

understanding. We explore this promise in this work.

Through a formative study of creating small interactive sketches

using ChatGPT
1
and Claude,

2
we find that (1) working through

1
https://www.chatgpt.com/

2
https://www.claude.ai/

a user-centered design process in chat alone leads to lost require-

ments and a lot of scrolling through to find prior questions, deci-

sions, and discussions, and (2) individual point solutions—without

consideration of alternatives—lead to significant anchoring bias.

Combining these findings with knowledge from prior work in AI

assistance for design, we develop the Pail IDE.

Pail embeds a chat agent with two other LLM-based agents into

an integrated environment to facilitate higher-level consideration

of design choices while programming with LLMs, enabling users

to design and iterate on programs while working at higher levels

of abstraction than the code itself. At the highest level, Pail elicits

design alternatives, rationales, and prompts to guide users toward

user-centered design principles. Pail also speculatively proposes

and explores alternative problem and solution formulations, gen-

erating interactive prototypes to support epistemic goals through

testing and other assessment. At the most granular level, Pail tracks

requirements and implicit decisions made by the (black-box) LLM

without user input, surfacing abstractions to establish common

ground and clarify understanding. As an IDE, Pail also allows users

to directly edit the code itself, providing full control over imple-

mentation details.

Through a lab study with 11 participants, we use Pail as a probe

to understand the benefits, limitations, and some future challenges

for LLM-powered programming tools’ support for program design.

Pail helps participants consider their audience and communica-

tion goals; participants express appreciation for having a direct

summary and for the ability to manipulate those decisions in situ,

and 100% of participants find at least one unconsidered alterna-

tive that influenced their design work. Further, we find that rapid

code generation allows actual executable interactive programs to

fit into a sketch role: a cheap, “disposable,” [14] epistemological

artifact, rather than a work-in-progress prototype representing an
investment of time and resources—an ability that is suggestive of

an altered program design process. Finally, our findings suggest

an emerging issue in managing user attention: as more agents and

UI affordances lay claim to being helpful and are integrated into

developer environments and workflows, these tools will also need

to competently balance user attentional capacities and desire for

agency. We discuss these observations’ implications for future tools

supporting programming and other design activities, and suggest

opportunities for further research.

This paper makes three contributions: First, it describes Pail,

a prototype IDE that introduces a new set of interactions extend-

ing chat to support program design activity at higher levels of

abstraction. Second, it offers a rich description of how and when

Pail’s design support is useful (and not) for creating interactive

software prototypes. Lastly, it identifies core upcoming challenges

for a future of programming in which programmers relay abstract

instructions to LLM agents that synthesize code: these agents will,

critically, need to manage and direct user attention, keeping users

abreast of AI-initiated changes and carefully considering what in-

formation to show.

2 Related Work

Our work draws on empirical studies and theories of design and

recent work on LLMs for creative tasks. Here, we review prior

https://doi.org/10.1145/3706598.3714154
https://www.chatgpt.com/
https://www.claude.ai/
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work on systems for sketching and comparing alternatives within

design processes; the nascent area of LLM-powered programming

assistance as well as pre-LLM approaches; and, lastly, approaches

to making better use of LLMs in structured complex tasks.

2.1 Program Design Processes; Sketching and

Comparing Alternatives

In the fields of design and HCI, the process of designing is charac-

terized by exploring the space of solutions and iteratively reformu-

lating the problem to solve. Sketching, a form of rapid prototyping

for quickly exploring the essential dimensions of a solution space, is

a widely accepted, studied, and practiced tool for thought [14, 37]—

serving in part to help designers explore alternatives, sometimes

even in parallel [21]. Described by Buxton as distinct from proto-
typing, sketching aims to evoke, rather than describe. A prototype

is often constructed for a specific goal, such as to explore how an

artifact might work, look and feel, or relate to other components of

a system [29], and can be considered a “work in progress” in the

sense that it is meant to faithfully reproduce that aspect of a final

artifact, perhaps even to confirm a particular design decision, and as

such represents an investment of effort (and potentially materials).

A sketch, in contrast, is meant to be quick, disposable and plentiful,

suggestive, and serves more of a “cognitive offloading” role to build

a shared understanding [14].

In divergent, exploratory phases of the program design process,

programmers also often engage in Exploratory Programming [9, 56],
writing code as a medium to prototype with different ideas, with

an open-ended goal and no existing specification. In such a phase,

programmers may engage in Opportunistic Programming [12, 13],

a form of programming in which speed and ease are prioritized

over robustness, maintainability, or other engineering goals. Copied

code found on the web is a common hallmark—and today’s LLMs’

code generation capabilities provide a new venue for finding code

to incorporate into a prototype.

Considering and examining alternatives, in these phases an ex-

plicit activity forming part of the design process, has a long history

in HCI too: recent examinations in the context of prompting text-

to-image models like Promptify [11] and Dreamsheets [3] echo

prior systems like Kery et al’s Variolite and Verdant for com-

putational notebooks [33, 34], Hartmann et al’s Juxtapose system

for exploring alternatives in parallel in code [26], and Terry et al.’s

Parallel Paths approach for parameterized vector art [63]. These

systems in turn trace their lineages back to Marks et al’s Design

Galleries [46] for expensive-to-generate computer images, and are

complemented by a set of theory-driven work aimed at understand-

ing how and why these processes help designers [45, 52]. These

systems and studies all point to parallel exploration and tracking of

alternatives as a well-established, essential process in exploratory

programming [32].

2.2 AI Assistance for Programming and Design

Our work here also builds on two major threads of research in

AI assistance: assistance for programming, and assistance for de-

sign. On the programming side, the biggest impact comes from

autocomplete-focused assistance through tools like CoPilot [23],

which has been extensively studied [7, 19, 51] and shown to serve

both “recognition-over-recall” [49] and epistemic (e.g., “oh, I didn’t

know about list comprehension in Python!”) goals [7]. Other work

has explored how LLMs can be used in the service of design pro-

cesses for creative coding [5], data analysis [24, 36, 42, 47], and even,

circularly, for the assessment of LLM outputs themselves [55].

Pre-LLM work in both AI assistance [16] and the usability of

code synthesis [30, 44] is also relevant here, offering insight into the

kinds of assistance programmers are looking for: support for writ-

ing mundane boilerplate or glue code, for reasoning, and for rapid

iteration. Traditional code synthesis has found uses in a number

of ways, most notably for HCI through a line of work on program-

ming by demonstration—often repeated demonstrations following

a feedback-driven design process, in the service of spreadsheet for-

mula construction [25] and web scraping and automation [8, 40].

This empirical work is complemented by a set of theoretical,

speculative, and design-oriented work around the opportunities

and challenges of effectively instructing AI systems and designing

both with and through them. These include studies of prompt-

ing [43, 66, 67], impacts of current LLMs on creative design pro-

cesses [4, 59] speculative future design processes [64], new concep-

tual models (e.g., [58, 62]), and questions of agency (e.g., [38]) and

perception (e.g., [35]). This body of work emphasizes the extent

to which iteration is critical to design, especially when working

with black-box models, that evaluating LLM outputs for correctness

is challenging due to intrinsic unpredictability, and that steering

LLMs benefits from understanding how LLMs go about performing

the tasks a user asks them to perform.

2.3 Workflows Integrating LLMs in Complex

Tasks

In order to take advantage of LLMs’ capabilities to perform sim-

ple tasks well and apply them to more complex tasks, researchers

have explored workflows that integrate LLMs. Wu et al. proposed

chaining as a technique for connecting LLM calls to each other [65].

Building on this interaction model, Arawjo et al. developed Chain-

Forge [6], an interface for composing LLM prompts and assessing

the results of prompts. Exploring alternatives to linear composi-

tion, Kazemitabaar et al. [31] compare two different forms of task

composition: (i) phase-wise decomposition which batches steps

together and (ii) step-wise decomposition which iterates on each

step piecewise. Across this work, a common finding is that systems

need to scaffold LLM usage in order for users across experience levels
to make the most of an LLM’s capabilities.

This set of work also shows us that individual interventions

to aid in design, in organization, in evaluation, and in grounding

assumptions can all be helpful. Here, we aim to shed some light on

what challenges will arise when we begin to build more complex

cognitive support tools that integrate multiple of these affordances

into a single system. Indeed, research in the AI community has

shifted towards developing cognitive architectures for coordinating

multiple agents [60], even to complement each other’s strengths

and weaknesses [27].

3 Designing Pail

Through this work, we aim to understand how explicit design

support can impact programmers’ design and prototyping processes.
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We adopt a Research through Design approach and develop Pail

to probe into what programming with LLMs could look like in the

future.

3.1 Design Process

We developed Pail iteratively based on the described prior work

and a formative study. Throughout our design process, we discussed

and incorporated feedback among the co-authors.

Two practical considerations constrained our tool and study de-

sign spaces upfront; these led us to focus primarily on experienced

programmers making small interactive prototypes for personal or

(non-deployment) professional use:

First, the current fidelity of LLM code synthesis limits the com-

plexity of the programs that can be effectively constructed or iter-

ated upon by these models with limited human intervention—but

we expect new models to continue to develop these capabilities. To

avoid having our observations unduly influenced by today’s model

failure modes, we target smaller programs that can be fully included

in LLM context windows, in a language and using a framework

that is well-represented in the training data.

Second, we are interested specifically in design support, not nec-
essarily in supporting end-users learning how to program—there is

plenty of great work in that area already. Thus, we primarily target

participants with a strong understanding of programming.

3.2 Formative Study

We conducted a formative study to identify challenges that emerge

when following common design processes for program design us-

ing an LLM-powered chatbot. We recruited five participants from

within the HCI and Design-focused groups at our institution, with

a range of experiences creating interactive software prototypes. All

participants were students in their final two years of undergraduate

education or doctoral students.

Over each of six weeks, a subset of participants used ChatGPT

or Claude to produce p5.js code prototypes for a variety of inter-

active programs, running those prototypes by copy-and-pasting

any generated code into a standard p5.js environment.
3
We chose

ChatGPT and Claude for our study rather than GitHub CoPilot or

other AI copilots because the latter tools do not provide design

guidance nor engage in requirement elicitation, and require users

to engage with code rather than higher-level abstractions.

Our pariticipants’ interactive programs ranged from basic games

and simulations (e.g., a fashion simulator that lets you try on—

virtually—images of clothing) to showcases for artwork, aggregators

for real estate listings, and other sensemaking tasks. Occasionally,

participants were asked to create an interactive artifact for someone
else, or asked to observe someone not related to the study using

ChatGPT or Claude for the first time.

Our formative study participants observed that tracking the

outcomes of design discussions was a major challenge, as these

discussions rapidly disappeared into chat history and became very

challenging to find or recall—and, as decisions receded into the

chat history further, the models themselves were also less likely

to consider them in future iterations of the design. Additionally,

both ChatGPT and Claude limited their responses to one of (1) a

3
https://editor.p5js.org

single point solution paired with a description of that solution, with-

out discussion of trade-offs or alternative solutions, or (2) several

possible solutions, paired with a description, but not comparing

solutions with each other or discussing trade-offs among them.

Participants expressed an appreciation for being able to quickly

generate code to test out ideas, but found it challenging to later

identify those experiments or revert to the code used for them.

Participants also reported feeling unsure about the code the LLMs

generated, looking at it relatively rarely—the common iterative loop

consisted of running the generated code and asking the LLMdirectly

to fix any observed errors, rather than reviewing the code directly

for errors. Conspicuously lacking was support for an understanding

of the generated code, beyond the high-level overviews produced

by the LLMs—overviews which lacked mention or explanation of

critical decisions or assumptions made by the LLM. Even when

these were provided, they were typically buried within paragraphs

of overview, requiring a close read to find, and participants almost

never read these explanations closely because of a low signal-to-

noise ratio.

Lastly, those participants who mediated a program generation

exercise for someone else reported spending substantial time iden-

tifying what needs that user had, and then synthesizing solutions

for those needs. These activities required more concrete epistemic

goals in prototyping.

3.3 Design Goals

From our formative study, we distilled a set of four design goals.

DG1 : Pail should provide explicit support for generating, keep-

ing track of, and comparing alternative designs.

DG2 : Pail should extract and track task requirements and deci-

sions explicitly, outside of the primary conversation dialogue, to

keep these salient and visible to both the human designer and the

LLM that is generating code.

DG3 : Pail should take reasonable steps to help users avoid

reading the program code, keeping them at their desired level of

abstraction in communicating in terms of functionality and goals—

including by surfacing, in natural language, decision points that

exist only implicitly in the code.

DG4 : Pail should help users consider the needs and goals of

the ultimate users of the programs being designed.

We considered several possible designs for showcasing alter-

natives ( DG1 ) and version histories in early prototypes of Pail,

including a Git-like “commit” structure inspired by Litt [41]. We

ultimately selected a lightweight “pull” model influenced by Kery

et al’s observation that, in data science workflows, “versioning” in

the traditional software sense can be too heavyweight to be use-

ful [34]. We also decided that, as suggested by Lunzer et al. [45],

Pail should offer prospective (speculative) comparisons of possible

alternatives, not only retrospective comparisons of selected alter-

natives. As a result, we implemented Pail to suggest alternatives

whenever possible ( DG1 ).

To help ensure that user communications at a high level of ab-

straction were likely to refer to concepts the LLM also had a handle

on, and based on recent findings in cognitive science on the dis-

covery and usage of abstractions in conversation, we incorporated

an explicit mechanism for grounding specific jargon with a textual

https://editor.p5js.org
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Figure 2: Pail’s capabilities overlaid on the UK Design Council’s Double Diamond [17]. Building beyond a “prompt”-to-“code”

view of LLM code generation (top), Pail (bottom) embeds this capability within an IDE that supports developers through a

larger design process: by abstracting up from a specific problem to a higher-level one, exploring alternative problems and

alternative solutions, tracking design goals and requirements, and surfacing implicit decisions (green boxes).

description ( DG3 ). For example, consider a puzzle game with a

specific win condition: explicitly calling out “Win Condition,” with

a description of what that phrase means, offers users both a spe-

cific name to refer to this concept, and confirmation that both the

user and Pail are using that phrase to refer to the same sort of

underlying concept.

A second affordance aimed at a maintaining a level of abstraction

higher than code is a set of individual code change summaries,

in natural language text, that accompany any code change Pail

suggests. Incorporating this explicit mechanism for tracking code

changes at a higher level allows users to avoid the “context switch”

of shifting their thinking mode from design considerations, to code,

and back again.

Lastly, explicitly surfacing “implicit” decisions (necessarily) made

by the LLM when it synthesizes code in response to an ambiguous

request provides a mechanism for considering these decisions and

generating possible alternatives ( DG2 , DG3 ). These decisions can

be critical to a design, and include decisions about how to represent

data, like user progress through an application, or how to opera-

tionalize certain constraints, like how to validate a “win condition”

in a game. In our formative study, we found that unsurfaced deci-

sions were discussed only when these decisions had a visible impact

the user noticed and chose to inquire about, but constrained the

future design space regardless—so we chose to make them explicit

here.

3.4 System Design

What emerged from our design process was the need for two sets

of entities: a set of “agents” that engage with the user directly (such

as the ConversationAgent) or indirectly through UI affordances

(such as the DesignAgent and ReflectionsAgent). These agents

are complemented with a set of “views” (see below) aggregated into

a “design panel” on the right-hand side of Pail (see Figure 3).

The design panel is Pail’s primary differentiating feature offer-

ing a consistent interface to four design aids, represented as four

subsections to the panel, shown in Figure 3:

(1) DQs Design Questions & Goals: this section tracks the

kinds of questions an interaction designer would ask when

designing a new interactive piece, including problem formu-

lations,

(2) Reqs Confirmed Requirements: this section tracks de-

cisions that the human has made or confirmed.

(3) Decs Implicit Decisions: this section identifies and sur-

faces decisions the LLMhas implemented in the codewithout

explicit confirmation, such as choices regarding how data is

structured, or how displayed values are calculated.

(4) UAbs Useful Abstractions: this section offers grounding

terminology, alongside one-sentence descriptions, for the

user and the AI to validate that they are referring to the same

concepts when they use project-related language.
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ConversationAgent

DesignAgent

ReflectionAgent

Code Pane Output Pane Chat Pane Design Pane

Figure 3: An overview of Pail’s user interface and related agents. Pail engages users in defining and refining ( DQs ) design

goals, including target audience and desired impact, while tracking ( Reqs ) confirmed requirements and ( Decs ) decisions

implicit in an LLM’s synthesized code, surfacing ( UAbs ) useful abstractions, and offering explanations and alternatives across

the program design space. A full-scale reproduction of the design pane’s four views appears in Figure 4.

Each of these subsections contains a list of items generated by

the ReflectionsAgent in response to the ongoing conversation

in the chat panel, described below. Each item in the design panel

includes a justification (“rationale”) for that item as well as 2-3

possible “alternatives.” Any alternatives, except some that the Re-

flectionsAgent identifies as important, are hidden behind an

accordion-style view, revealed only when the enclosing item is

clicked.

In one study participant’s project, within the DQs Design Ques-

tions & Goals section, appears the item “What themes or characters

would be most engaging for a 6-year-old?” accompanied by the ra-

tionale “Engaging themes and characters can make learning more

enjoyable and effective.” and the alternatives “Animals”, “Super-

heroes”, and “Fantasy worlds with magical creatures”. Finally, each

of these alternatives, in turn, is then speculatively executed by the

DesignAgent, which populates each alternative with a sentence

about possible cost/benefit trade-offs of that choice. For “Fantasy

worlds with magical creatures,” for example, the trade-off text is

“Stimulates imagination; may distract from educational content.” A

Try button next to the alternative triggers the DesignAgent to

go ahead and make that change. A screenshot of the four sections

of the design panel appears in Figure 4. (An additional Revert

button appears in response to clicking Try , which restores the

original code in the IDE; not shown.)

The design panel is located as the rightmost of Pail’s four main

panels (see Figure 3): a code panel, an output panel (with a console

for errors and printed output), a chat panel, and the design panel.

The code panel allows users to view and directly modify any project

code, and uses a common in-browser code editor, Monaco,
4
con-

taining p5.js5 code that is then run and displayed in the output

panel.

The chat panel is the interface to a prompted GPT-4o-based chat-

bot (ConversationAgent) that can read the project code, patch

it, or entirely replace it. Changes to code are summarized within

the chat, displayed in “diff” form, and then propagated directly to

the code panel, which shows a holistic “diff” over the prior itera-

tion of the project. The ConversationAgent itself is prompted to

explicitly guide users through a focused User-Centered Design [2]

process: identifying target users, evaluating their needs, assessing

possible goals for the project given users’ communicated design

ideas, and finally generating code for prototypes to test any hy-

potheses generated through this conversational design process.

The design panel and chat panel operate in a tightly integrated

way: conversations in the chat trigger the ReflectionsAgent to

update the design panel’s contents, while manipulations in the de-

sign panel (i.e., trying a specific alternative) trigger code changes

via speculative (i.e., uncommitted) executions through the Conver-

sationAgent by the DesignAgent.

3.4.1 System Design Non-Goals. Equally important to the design

of Pail is what we did not include. Because our focus is on design

process support, Pail does not provide assistance with debugging

or handling nonfunctional LLM-synthesized code, nor any kind of

4
https://microsoft.github.io/monaco-editor/

5
https://p5js.org

https://microsoft.github.io/monaco-editor/
https://p5js.org
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automated QA or simulated user testing, two areas worth consider-

ing for an AI-assisted IDE. We leave investigation of these topics

to future work.

3.5 Pail Implementation

Pail is implemented as a React single-page application, proxying

calls to GPT-4o through a node.js backend that logs all requests.

The code editor uses Microsoft’s Monaco
6
editor configured to dis-

play code differences inline. The chat component is a custom-built

turn-taking component for user communication with the Conver-

sationAgent; it shows chat messages as well as summaries of any

code changes made by the ConversationAgent alongside diffs

with any changed code.

We chose the Monaco editor (a component from VS Code) specif-

ically because of its overall flexibility and support for showing

“diffs” of code inline. This code is run using the p5.js library run

alongside an HTML Canvas element enclosde within an iframe
element, using the loop-protect library7 to prevent infinite loops
from interrupting event processing in the browser. The iframe’s

console object (used to report errors to developers) is proxied

through the browser’s postMessage API to allows p5.js errors and

other console messages to pass through to the IDE.

A few technically challenging parts of Pail’s implementation

are worth noting.

3.5.1 Speculative Assessment. The code and design panel JSON

structures are stored as separate “artifacts” in versioned flat files

by the node.js server. To improve latency and offer an a priori
indication of the impact a particular change might make the Desig-

nAgent speculatively assess a subset of identified alternatives to

design panel items.

These speculative assessments vary in scope; depending on the

nature of the alternative, this could include: (1) how that alternative

might impact DQs design goals, such as considerations of target

users; (2) what additional Reqs requirements that alternativemight

reveal; and (3) any new DQs design questions that may emerge

from consideration of that alternative. Figure 3 shows how agents

and artifacts influence one another.

3.5.2 Differential Updates to Code. At the time Pail was created,

LLMs excelled at generating full files worth of code, but did not have

a mechanism for incrementally updating existing code. Because

Pail is premised on rapid iteration across levels of abstraction, we

decided it was important to have such a mechanism, so that users

could ask for a small tweak (e.g., “can we make the small rectangles

blue?”) and have that change implemented quickly. Other systems

like Claude’s Artifacts and ChatGPT’s Canvas rewrite the full code
from scratch each time, which is not only slow, but also often

includes other, unrelated changes to the code—a complaint we also

heard in our formative study.

Obvious solutions we tried, like asking an LLM to output a code

change in diff or unified diff format, failed frequently: line num-

bers wouldn’t match up, edits were interleaved with both old and

new code, and new code was sometimes inserted in the wrong

place altogether. These errors align with some prior observations of

6
https://microsoft.github.io/monaco-editor/

7
https://www.npmjs.com/package/loop-protect

LLMs’ failure modes too: arithmetic is not a strong suit; text locality

matters and disrupting it (by interleaving new and old code, for

example) lowers performance.

Pail instead provides all active code to the LLM with every

request, transforming that code by prefixing L#### to each line,

with #### replaced by each line’s consecutive line number—thus

providing a built-in line-numbering scheme. Edits, implemented as a

tool call, are represented as “old code” using the same L#### prefix,

and “new code”, again with a line number prefix. This allows a

straightforward extraction of which lines to replace (fuzzy-matched

against line numbers and old code lines, for robustness), and locality

in the production of new code. With this technique, we found that

Pail succeeds in patching code directly from LLM calls over 90% of

the time, with failures readily discoverable—and full-rewrite as a

backup. As a bonus, these incremental updates can be streamed to

users as well.

3.5.3 Differential Updates to Design Artifacts. In addition to incre-

mental changes to the code, we implemented incremental changes

to the four components of the Design Panel. Here, the challenge

was primarily one of updating the visualization: these components

are regenerated from scratch often, and in phases (first the sum-

mary line, then the alternatives, rationales, and highlights)—as with

updates to code, we wish to begin displaying this data to users im-

mediately as it comes in, especially when there is not already any

data to display.

But when there is already displayed data to update, Pail needs

to evaluate the new set of, e.g., Reqs Requirements, which are

streaming in as an incomplete JSON object, against a full set of

existing Reqs Requirements complete with alternatives, ratio-

nales, and highlights. This is accomplished by fuzzy progressive

prefix-matching of incoming data with existing data. For Reqs , for

example, individual requirements coming in through the stream

are compared with existing requirements for equivalency up to a

threshold; only when confidence is high that a requirement is new

does the visualization update to display the new requirement as its

contents stream in from the ReflectionsAgent. Meanwhile, prefix-

matched requirements (such as an incoming requirement with the

incomplete text “Track the num” matches “Track the number of

correct and incorrect answers.”) are not updated until changes are

detected, avoiding re-rendering of existing requirements as they

are streamed in. This technique is then applied, recursively, to the

nested alternatives, rationales, and highlights.

4 Pail Usage: An Example

To make the design and intended use of Pail concrete, consider

the following usage scenario. Sam, an experienced backend system

software engineer and parent of two—kids 3 and 5 years of age—

is eager to help her 5-year-old, Alex, learn how to read simple

words. Sam’s tried what feels like all the iPad apps in the store, but

none have clicked with Alex. Sam knows she could write a new

app, but she’s not sure she can commit the time: programming in

an unfamiliar environment (e.g., a game environment) often has a

learning curve with high variance in time required, and there would

likely be a lot of upfront preparation required before Sam could

show Alex anything actually interactive—time ultimately wasted if

Sam’s game ideas don’t appeal to Alex.

https://microsoft.github.io/monaco-editor/
https://www.npmjs.com/package/loop-protect
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(a) The DQs Design Questions & Goals section. (b) The Decs Implicit Decisions section.

(c) The Reqs Confirmed Requirements section. (d) The UAbs Useful Abstractions section.

Figure 4: A screenshot of the contents of each of the four components of the design panel, from P9. The third question in DQs

Design Questions & Goals (a) (“How can we effectively [...]?”) is expanded to show the rationale for that question along with

three alternatives. The mouse hover over the third alternative (“Crowdsource [...]”) reveals a speculated trade-off for trying

that option. In Pail, these four sections are organized vertically in the design panel. Items with a finger are important, dotted
underlines allow hover (see (a)) for trade-offs. Green background and red strikethrough indicate recent changes.

With Pail, Sam engages in the following scenario:

(1) Sam asks the ConversationAgent for help making a game

for Alex to practice reading simple words.

(2) Pail responds with a chat message containing a few ques-

tions; a few seconds later, these appear in the DQs Design

Questions section of the design panel.

(3) Sam scans the suggestions in the DQs list: about who the

user is, what kind of help they need, and what her own goals

are for the app, finding the following:

• What specific skills should the game focus on? (E.g., let-
ter recognition, phonics, simple words)—with an explicit

suggestion she try Focus on simple words.

• What types of activities or game mechanics would be most
engaging?—with the note that engagement will keep the

child motivated.

• Are there any themes or characters that your child particu-
larly likes that we could incorporate?

See Figure 4 for a screenshot of a similar set of DQs Design

Goals.

(4) Sam considers what she knows about Alex, what kind of

support she needs, and more. Ultimately she clicks Try

next to the DQs Design Question alternative Focus on simple
words.

(5) Pail’s DesignAgent notes this suggestion and follows up

with another question:Any kinds of activities your kid enjoys?
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(6) This time, Sam responds in chat:maybe a word-picture match-
ing game?

(7) Pail’s ConversationAgent offers an idea for an implemen-

tation using a drag-and-drop interaction, asking does this
approach sound good to you?

(8) Sam finds this suggestion confusing. Drag-and-drop isn’t an

interaction Alex is that familiar with, and in other apps it

hasn’t worked very well. What are some alternatives? Sam

scans the design panel and finds drag-and-drop interaction in

the Decs Implicit Decisions section of the design panel. She

clicks Try next to Use a tap-to-select interface for matching
words to pictures.

(9) Pail’s DesignAgent has speculatively executed on this ap-

proach already, and identified that tap-to-select is simpler for
very young children, and can be more intuitive than drag-and-
drop—noting this when Sam was scanning through possible

alternatives.

(10) Pail moves this item up to Reqs Confirmed Requirements

and produces an initial prototype of the matching interac-

tion: simple words and simple emojis, in a single line. The

ConversationAgent offers a summary of code changes,

and the ReflectionsAgent records that Decs Words and
pictures are displayed in a simplified layout.

(11) Sam doesn’t love this choice, and clicks Try next to the

Decs alternative Display words and pictures in a grid layout.
(12) In response to ConversationAgent’s generated patch to

use a grid layout, Pail’s ReflectionsAgent also moves this

new requirement to the Reqs Confirmed Requirements

section.

(13) At this point, Sam shows the prototype to Alex to gather

feedback: are the pictures understandable? Are the words

too complex, or too simple?

(14) Sam and Alex can thenwork together to revise the project, in-

corporating Alex’s feedback about what he likes and doesn’t

like about using the game.

Note that nothing here is beyond Sam’s capabilities as a software

engineer. She knows how to write code, but is unlikely to find

typical “paper prototyping” worthwhile for this use case. Pail gives

Sam the ability to “sketch” with code, overcoming the activation

energy required to choose and initialize an environment, figure out

a data model and rendering pipeline, or otherwise make a large

number of boilerplate decisions that must be resolved to have a

working program, but serve no other purpose towards Sam’s goals

around understanding what will help Alex learn to read.

Instead, using Pail, in 10 minutes Sam has already learned that

Alex adores emoji iconography but the targets are too small for

his fingers. Sam and Alex can continue using Pail to iterate on the

game, pursuing completely new directions without losing track of

the lessons they learned from earlier prototypes. Pail’s suggested

alternatives enable Sam and Alex to break free of anchoring ef-

fects or the “sunk code” fallacy of energy invested in authoring

code. Using Pail, the energy invested is in considering alterna-

tives, exploring the design space with potential users, and testing

prototypes—epistemic actions resolving unknowns, which serve a

useful design purpose whether they resolve positively or negatively.

5 User Study Procedure

We had two goals in our user study: (1) identify possible ways the

various built affordances helped or did not help users (though not

prove definitively); and (2) identify likely challenges inherent to AI

support for design.

5.1 Interview Protocol

We began each interview by showing a demo use case for Pail,

with an emphasis on what we expect it to be helpful for: designing

interactive applications. We showed how to use the chat function-

ality, explained the tight integration between the chat agent and

the code (as mentioned in §3.5, the chat agent can directly modify

the code), and then walked users through the various parts of the

design panel, explaining each subsection. With each subsection,

we showed examples of entries, complete with the rationales, lists

of alternatives, and results of speculative execution, and, finally,

demonstrated what happened when the user clicks on the Try

button. We finished our introduction by explaining our research

question, answering any questions from participants, and then

moving on to the first task.

We encouraged participants to think of Pail not only as a code
generation tool, but also as a design tool. We informed participants

that they could ask for broad, high-level goals in the chat panel,

such as “Help me design an interactive feature that goes along

with this article: [pasted article]” (see §5.2, Task 1 below)—that

the chatbot was designed to walk them through a design process,

considering target users and the participant’s own high-level goals.

Because our primary goal is not to measure the effectiveness of

Pail from a typical “HCI system evaluation” perspective, but rather

to learn what the point design that Pail represents can tell us about

the broader design space of AI-assisted programming, we actively

encouraged participants to make use of Pail’s affordances, and

gave them suggestions on when and how to do so. This allowed us

to observe a broader range of interactions and impacts than a more

traditional lab study, or which might otherwise only be visible after

participants develop an expertise using Pail. Naturally, this choice

comes with limitations on what we can thus claim.

5.2 Tasks

Our primary criteria for task selection were: ambitious and am-

biguous goals; robustness to common LLM failure modes, such

as tracking long (or multiple) code files; and enough design focus

that we could reasonably observe a diversity of design approaches

among our participants.

As mentioned in §3.3, because we are primarily interested in the

impact of design support on program design, and not on LLMs’ code

synthesis capabilities or ability to support end users in learning

programming concepts, we chose tasks that were ambitious but

achievable using a length of code that our choice of LLM could ro-

bustly handle. These interests also drove selection of our participant

pool, discussed below.

We ultimately selected 3 tasks for our participants:

Task 1: Create an interactive feature to go along with an article

about the impacts of air conditioning on migration patterns

in high-average-temperature areas.
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Task 2: Create a game that helps a young child learn how to read or

multiply.

Task 3: Create a simulation to show the effects of medical overtest-

ing, e.g., recommending screening for specific rare diseases

for more people.

For participants who were parents, we started with task 2, and

specifically asked for them to consider the needs of their own child

and create a game to address one such need, so that we could

observe whether having a very specific target user, who is well-

known to the designer, has an impact on the design process. Parents

were then asked to engage in task 1, if time permitted. All other

participants were asked to engage in Task 1 first, then offered a

choice of 2 or 3.

Several participants also requested time to engage in an open-

ended exploratory task, in which they could experiment with Pail

in service of some personally meaningful goal; we supported this

where time allowed.

5.3 Participants

Participants were a mix of 5 academics and 6 professionals, of whom

3 were parents. We recruited participants with varying levels of

programming expertise, design experience, and prior LLM use; see

Table 1. Our sample size was chosen in line with prior work around

formative testing for usability [22, 53]: our goal is to explore the

early benefits and likely challenges users encounter when engaged

in our task using Pail, and our experience with pilot users suggested

that we would find benefits and challenges quite quickly.

Our participant pool is skewed towards, but not exclusively

consisting of, professionals and graduate students in design- and

STEM-related fields—and it is certainly not representative of the

population at large. We are not making claims about how a specific

population does or does not engage in specific behavior, but rather

seek to identify Pail benefits and forecast future challenges among

a population that we expect is disproportionately likely to be early

adopters of LLM-based tools.

We also skewed our pool towards participants with program-

ming experience because we are most interested in design support,

and wanted to avoid confounding factors caused by participant

inexperience with code, programming systems, or other parts of

Pail that were not directly related to our research goals.

5.4 Analysis & Evaluation

Participants were instructed to think aloud while engaged in the

tasks. We then undertook an exploratory data analysis, transcribing

all videos and observing where participants directed their attention,

where they made design decisions, and what factors appeared to

influence them. We also noted where interviewers intervened. We

then compared these observations across participants and catego-

rized their approaches and uses of Pail using a well-established

affinity diagramming process [48], and through the use of service

blueprints [10] that document participants’ behavior and reflec-

tions. We elected to use these methods from HCI and service design

because we seek to understand broadly how different participants

engage in similar tasks with a new technology—one that does not

have an existing set of users with pre-established work practices

they are already engaged in.

6 Findings

In this section, we report findings from our participants’ use of

Pail. In particular, we find that (1) participants frequently engage

in rapid-fire repeated iteration, commonly at higher level of abstrac-

tion than code, and often (but not always) through use of Pail’s

Design Panel. While in this state, participants treated iterations

as disposable “sketches”, demonstrating little attachment, and en-

gaged in activities spanning all parts of the “4 D’s” of design, from

problem discovery and definition through solution development

and delivery, sometimes within the same action.

We also find that (2) focused attention was spread quite thinly

while participants used Pail, and between changes to code, new

messages from chat, and changes to the design panel contents,

awareness of what was happening in Pail was easily lost and was

perceived as costly to regain—and that these perceived costs ulti-

mately influenced where participants directed their attention.

In §6.1, we describe how participants use (or do not use) Pail’s

design support to move across abstractions, consider alternatives,

and explore the spaces of possible problems and user needs. Then, in

§6.2 we examine where Pail falls short in supporting users’ design

processes, and why.

6.1 Use of Pail’s Design Support

First, we report on ways in which participants used Pail, drawn

from in-interview reflections and post-session analysis of Pail use.

Across our open-ended program design tasks, participants were

quite varied in their approaches.

A common (9/11) initial stumbling block was choosing the first

action: though all participants were shown a “project in progress”

within Pail with an overview of its various components (see Fig. 3),

most (7/11) were not sure at what level of abstraction to make

their first request. Should they think of a solution first, and then

request that solution? Should they simply provide a description

of the design task (and in the case of article-associated interactive

task, the article) directly to the ConversationAgent? Only four

participants began by asking the ConversationAgent about the

design task directly, even thoughwe consistently provided guidance

that Pail could help them brainstorm ideas, too, and that they

should not feel the need to wait until they had a concrete idea to

start making requests.

6.1.1 Abstracting Up & Problem Exploration. Regardless of the na-
ture of the initial request, the ConversationAgent would then

respond with questions aligned with the design process described

above, asking about DQs design goals, target users and user needs,

desired outcomes, and often offering some plausible responses for

each. For some participants, this would be the first time they would

step back to reckon with these factors explicitly; even participants

who had thought about what specifically to design often did so with-

out discussing goals or users, but rather brainstorming solutions

directly based on what each solution could provide.

All participants interacted with the initial “design process” phase

of the ConversationAgent, and all were steered, to varying de-

grees, by being prompted with these questions. Participants who

started by suggesting a specific point design would often use these

questions as an opportunity to think more broadly. Even senior

programmers with design expertise found something to consider
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ID Age Parent? Professional Background Design Experience Programming Experience LLM Use

P1 40s Yes Design Researcher Professional Professional Infrequent

P2 20s - HCI Graduate Student Professional Professional Frequent

P3 30s - HCI Researcher Amateur Professional Frequent

P4 30s - Software Eng Manager None Professional Infrequent

P5 50s - Software Eng Manager Professional Professional Moderate

P6 60s - Film & Media Artist Professional Amateur Frequent

P7 20s - HCI Graduate Student Professional Amateur Infrequent

P8 40s Yes Filmmaker & Academic Limited Limited Infrequent

P9 50s - Sound Artist & Lecturer Professional Amateur Infrequent

P10 60s - Software Engineer Amateur Professional Moderate

P11 50s Yes Software Engineer Limited Professional Moderate

Table 1: Study participants.

in ConversationAgent’s prompting, expressing thoughts like

“this really broke it down in an interesting way, who is your target

audience” (P5). Later, P5 would reflect:

I didn’t have an idea of what I wanted to do when you

first presented me with this problem, and so putting

this in and then kind of exploring the "oh, i see, it

came up with regions"—and I thought "that sounds

reasonable let’s start with regions.

The questions could be an awkward fit for some participant-

initiated tasks, however. For example, in tasks that were not tar-

geted at user needs, the questions seemed not well-targeted to the

participant’s goals. P6 wanted to use Pail to make a particular

“artistic” sketch they had in mind using p5.js, with which they

were already familiar. Recalling their reckoning with the questions

ConversationAgent posed, P6 later reflected:

Yeah I guess the design element, meaning the “design”

as the [...] medium that you’re working with here,

and having these different questions, requirements,

decisions, useful abstractions and things like that, is

pretty interesting [long pause] But I like it, I like being
turned on my ear, you know, it’s good.

Some participants also wanted to start directly with an example,

rather than by thinking through user groups and user needs. One

participant, before even using Pail, rationalized this desire by not-

ing that it was easier to iterate from a single design than to come

up with one from scratch.

Typically, participants would then consider these questions, re-

sponding either directly to the ConversationAgent, or scanning

the summary of questions and possible answers in the design panel

and then exploring a subset of ReflectionsAgent-proposed al-

ternatives through the DesignAgent. Participants varied in how

they responded to these questions when they did engage. For ex-

ample, P11 treated the design questions and proposed answers as a

checklist to select user groups and features from, clicking the Try

button on all the options that appealed, upfront, and only then ran

the generated program.

Reflection. Recall that one of our major goals with Pail was to

encourage thinking about design goals and questions explicitly—on

this count, we succeeded for many participants, but not all. It is clear

from our study that some users are likely to want to start directly

from a point solution, and only then reconsider design goals, target

users, etc.—and future tools should consider how to best serve this

population, perhaps by starting from a set of easily-comparable

point solutions to reduce anchoring.

6.1.2 A Working Sketch: First Contact & Rapid Iteration. For most

participants, the first prototype that instantiates a solution, for a

sufficiently-formulated problem statement, is revelatory—exposing

a number of mismatches between the participant’s understanding

of the project and either the current state of the code, or the agents’

understanding of the project. For example, P9 expected a set of ques-

tion and answer cards to be shuffled evenly across the canvas, but

found them separated by category into distinct question and answer

regions. Two other participants (P5, P7) converged on map views

with the ConversationAgent, but then saw initial prototypes that

didn’t include maps per se, but rather stylized region diagrams with

rectangles and triangles representing world or country regions.

These types of mismatches almost always resulted in a flurry of

requests for low-level implementation fixes. Participants typically

requested these fixes either directly in natural language from the

ConversationAgent or by finding a suitable alternative in the

design panel and trying it. How long participants spent in this

rapid-fire local iteration mode varied, from under a minute (P8) to

more than 20 minutes (P7), during which their activities resembled

a flow state [18]. These participants appeared to have deep con-

centration, could express what they wanted as next steps rapidly,

noted an effortlessness to the repeated iteration, and with minimal

rumination. Participants’ think-aloud would often pause in this

state.

In this state, participants would often rapidly shift attention

across the code, output, chat, and design panel, looking to make

sense of what they were seeing, and for how to communicate de-

sired changes most effectively. Those with greater programming

expertise, or whose expertise was a closer match with the task
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domain, unsurprisingly spent more time looking at the code, but

not more time editing it directly—rather, seeking confirmation, in

the code, of a “lack of surprises” (P3) to validate that the program

was being authored in a way that met participants’ expectations.

Meanwhile, those with less domain expertise (e.g., no familiarity

with p5.js, or limited familiarity with authoring interactive arti-

facts) often ignored the code entirely past a certain point (7/11

participants).

Because none of the agents were designed (nor inclined) to break

users out of this state, it would often continue until either some

insurmountable “blocker” would interrupt, such as a bug the Con-

versationAgent couldn’t fix, or the user reached a point where

they achieved whatever prototype they had set out to achieve, and

needed to reflect on what to do next. However interrupted, partici-

pants would next take stock of where they were, deciding whether

to continue making iterative changes, or reconsider the current

approach’s suitability towards higher-level goals.

Reflection. This rapid iteration was almost always quite broad,

and not limited to any one of the traditional “4 D’s” of the Dou-

ble Diamond: the discover, define, develop, and deliver phases of
design. In fact, the same action might serve multiple goals: validat-

ing the defined problem while simultaneously progressing towards

prototype development, for example, or revealing some new, unan-

ticipated end-user need. To the extent that we expected to support

design processes, it appears that rapid iteration with interactive
prototypes as sketches enables a metaphorical superposition of the

problem-formulation and solution-exploration phases of design,

perhaps enabling more rapid iteration than paper sketches or other

traditional discovery methods in design. We are not suggesting that
these traditional methods of sketching and prototyping are obso-

lete, but rather noting that these interactive prototypes were being

used in a manner similar to an ink-on-paper sketch would in an

architectural design setting: as disposable, low-investment sketches
that allow the designer to investigate one facet of a design space

without needing to simultaneously resolve decisions across the full

design space.

6.1.3 The Design Panel, Alternatives, and Rationales. Nearly all

(10/11) participants reported finding the design panel useful. Eight

participants appreciated the summarization and tracking affor-

dances that enabled quick scans of the ( DQs , Reqs ) decisions

made so far (and updates to those decisions) when new chat mes-

sages began to exceed in length how much participants desired to

read. Seven participants expressed appreciation for the reporting

of rationales and alternatives. Though no participants explicitly di-

rected appreciation towards the Decs implicit decisions or UAbs

useful abstractions components of the design panel, we nonethe-

less observed several participants (P3, P5, P8, P9, P11) drawing

insight from these components. P2, for example, explicitly drew a

comparison with their prior ChatGPT experience:

I did try to use ChatGPT for that and it was...fine. [...]

It looked [worse] than the one we just built, and it

took me longer. [...] [In ChatGPT] I didn’t have the

right mechanism to high-level changes at this level of

abstraction.

Scanning the alternatives lists (and ultimately selecting an alter-

native to Try ) typically emerged after some initial trigger, as when

a participant would pause, unsure of what next step to take—in a

broader sense than just making the next single decision. For exam-

ple, at one point P10 recognized that their approach to visualizing

one particular set of interrelated values (in their case, temperature

and air conditioning usage) wasn’t going to work, and they weren’t

sure where to take the project next. In this and other similar cases,

the decisions and lists of alternatives offered a lower-cognitive-

load path forward, by allowing participants to select one of several
possible options rather than generate a new idea entirely as a next

step, echoing the recognition-over-recall UX design heuristic [49].

Scanning these lists would often result in focus on a single choice,

eliciting a reaction like “oh that seems like a good idea” (P4)—or

would yield an alternative not directly on the lists, but still inspired

by the scan, which participants would then suggest either in the

chat or in the alternative lists’ open text field titled “Replace with...”.

A few participants (P5, P7, P11), in “flow state” (see §6.1.2), pre-

ferred to use the design panel’s alternatives almost exclusively to

guide their exploration, avoiding chat. Asked why, P5 reported that

it was easier to answer multiple-choice questions than to repeat-

edly write messages in chat—treating the lists of alternatives in

the DQs design questions section as a sort of “design checklist,” a

menu from which to select target users, goals, and more.

Reflection. To the extent that we expected the design panel to

encourage participants to consider alternatives prospectively, our
findings here and in the previous subsection suggest we could do

better: participants only rarely actively sought out new problem

formulations unless prompted either by Pail, by an interviewer, or

by a realization that their current design approach was not going to

lead to success. Instead, they appear to consider alternatives only

retrospectively, after exhausting a particular, though narrow, line of

inquiry.

6.2 Stumbles, Mismatches in Participants’

Design Processes

Beyond participants’ use of Pail’s specific affordances, we also

observed behavior that bears on the design of future AI assistance

for program design; here, we detail those observations.

6.2.1 Re-considering Design Problems. Though Pail explicitly

elicits design considerations from participants at the outset of

project construction, there is no explicit support to bring users

to reconsider design questions and goals during the implementation

process. As a result, few participants explicitly reconsidered the

highest-level design directions within Pail, at least without explicit

prompting from an interviewer. In fact, in the “flow state,” many

participants would fixate and iterate on small details (e.g., colors,

item position, text content) repeatedly. Meanwhile, the Conver-

sationAgent was happy to support this low-level iteration for at

least as long as interviewers allowed.

But it was not the case that participants remained fixed in their be-

liefs about user needs and which is the right problem to solve—they

simply did not reconsider their design goals explicitly in conver-
sation with the ConversationAgent. Instead, these realizations

would come from specific prototypes that yielded specific forms of



Beyond Code Generation: LLM-supported Exploration of the Program Design Space CHI ’25, April 26-May 1, 2025, Yokohama, Japan

insight, such as whether particular problem formulation could be

compellingly addressed. For example, P10 at one point reflected: can

an end-user actually be convinced of a causal relationship between

air conditioning and climate change through a bar chart—or should

the interactive feature instead focus on a different climate-related

relationship?

Formost participants, this reconsiderationwasmore often voiced

to the interviewer rather than to the ConversationAgent, high-

lighting the need for explicit elicitation, at least initially.

6.2.2 Content Generation and Overwhelming Information. Nearly
every participant at some point commented on the overload gen-

erated by Pail. There is too much data, it is being generated too

fast, it’s too hard to look at everything, and it’s not clear what

one should be looking at. As a result, participants reported, much

effort was spent figuring out where to look and how to evaluate

changes. Running the project was almost always the top choice, but

that did not always work. Sometimes, program behavior was not

trivial to reproduce; bugs prevented visual output; or the program

simply could not be run because the ConversationAgent was in

the process of updating it, which could take longer than a minute

for large changes. While waiting, participants often scanned the

design panel, or the “diff” view of the code, to understand the scope

of recent changes or consider what steps to take after the code

updates have completed. In P5’s words: “Like, it’s asking me so

much in here, I’m not gonna read it every time.”

The main challenge causing a feeling of overwhelming infor-

mation between the code, chat, and design panel affordances, par-

ticipants reported, was simply too much data coming in at once.

When participants stopped to read through the design panel con-

tents, they could do so without a sense of overwhelm—and even the

chat’s relatively low signal-to-noise ratio content could be read in

this way. Rather, the challenges arose when clicking a Try button

or making a request, which would trigger a cascade of changes

in the interface; it was this cascade in particular that participants

struggled with.

6.2.3 Application of Reflection and Design Agents. Third, partici-
pants did not appear to make substantial use of the rationales the

ReflectionsAgent and DesignAgent provided for why certain

decisions were made or what trade-offs would result form selecting

a particular alternative. When asked, participants reported that

they simply found it easier to try an alternative than to consider

whether the provided rationale was valid and relevant—a version

of “show, don’t tell.” [61]

Participants also reported feeling little reason to trust these ra-
tionales, which were restricted in how much detail they provided.

This lack of detail limited the expected epistemic value of the pro-

claimed alternative compared with manual testing, but it also made

it challenging for participants to understand on what basis those ra-
tionales were generated, a critical input to participants’ assessment

of validity.

6.2.4 Attention, Expertise, and the Cost of Awareness. As the con-
tents of the code, chat, and design panes updated “automatically”

through agent updates, staying on top of the latest updates to any

particular pane required substantial attention. Once lapsed, this

“awareness” was costly to regain. The exact cost depended on exper-

tise, all else being equal. For example, senior programmers rapidly

lost awareness of the code, and their expertise helped them regain

it quickly when needed. The cost of regaining awareness depended

on participants’ choices for where to direct attention. If the code felt

“hopeless” (P1), or “unfamiliar” (P5), regaining awareness became

a priority only when a participant encountered a bug or issue. P5

described the experience of clicking Try and watching the code

change in response, in the following way:

Each time I click on something here [in the design

panel] [...] I’m like “Ah! What part of this is impor-

tant?”

Both domain and programming expertise played a role in miti-

gating those costs, and thus in how effectively participants could

stay on top of changes to code and design. This effect manifested in

a few ways: first, domain expertise helped participants more easily

recognize the overall “shape” of code components as they came in,

making it easier to stay on top of changes with lower self-reported

cognitive demands. For example, one participant with data science

expertise (P3) could recognize the boilerplate data formatting of

sample data as it was generated, but found code for a simulation

harder to stay on top of—while another participant with creative

coding expertise (P7) found p5.js code more straightforward to

retain awareness of.

We observed how participants expecting certain code to come

from chat or design panel requests watched as that code streamed

in from the ConversationAgent and then engaged in reflection-

in-action [54], expressing surprise (or dismay) when these results

deviated from expectations. This behavior echoes the observations

by Barke et al. [7] of experienced programmers using GitHub Copi-

lot.

Lastly, some participants (P6, P7, P8) rapidly formed a clear,

persistent vision for at least one requested task—and rarely, if ever,

found themselves actively seeking design alternatives, feedback, or

even an understanding of implicit decisions while in the “flow state”

of trying to achieve that vision. In the case of P8, the interviewer

switched one task’s development context from Pail to Anthropic’s

Claude AI system, which could generate and run code that was

more aligned with the participant’s vision at a more rapid pace

than Pail. This approach was an attempt to understand whether

P8 would reach a “saturation point” where they were satisfied that

their vision was achieved, and design support might be welcomed.

Though a saturation point was reached, the desired design support

was explicitly limited to “I’m not really interested in what the

system might tell me, the only thing I’d want to do is try it with

[my child]” (P8).

7 Discussion

One of our goals in conducting this work is in identifying the next

set of challenges the HCI community is likely to face in helping

programmers and other technologists design working programs

with AI assistance. Based on our experience designing Pail and

the evaluation results, we identify open challenges for LLM-aided

program design around (1) how users will define design goals and

problems, and evaluate progress towards those goals; and (2) how

tools will manage the trade-offs between providing more complete



CHI ’25, April 26-May 1, 2025, Yokohama, Japan J.D. Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, and Björn Hartmann

information and providing more relevant information from the

very large set of information that LLMs and other AI systems can

inexpensively and rapidly generate.

These challenges point to a potential shift in the nature of pro-

gramming, too, with an increased emphasis on interaction design
challenges like managing user attention and perhaps a decreased

emphasis on humans relying on particular programming language
capabilities—the latter increasingly mediated by the increasing use

of higher-level natural language.

7.1 Defining Goals, Exploring Problem Spaces

In order for LLMs to effectively support program design, they must

identify steps along the pathway towards a user’s ultimate design

goal that match a user’s mental model of the problem space. How-

ever, as we saw in our evaluation, what steps are meaningful and

how important they are depends on where users begin. If users have

a point design to begin with, the appropriate next step may be to

extrapolate key features before exploring alternatives. In contrast,

if users do not know where to begin, a the right next step may be to

name a design dimension before exploring concrete instances of it.

Indeed, these approaches are characteristic of the double diamond

of design as reflected in Figure 2.

But though the double diamond implies a certain linearity, we

found that Pail’s ability to rapidly generate code along many differ-

ent directions enabled a very nonlinear approach to design. Partici-

pants would rapidly shift between exploring possible solutions and

recognizing that their problem formulations may not have been ad-

dressable. For LLM-aided tools to be effective in helping users with

design, they should facilitate and recognize this rapid movement

between extrapolation and concretization that is enabled by their

code generation capabilities.

In one sense, this reflects a shift from exploratory code as pro-
totype to exploratory code as sketch. In many contexts, generat-

ing running code is considered an engineering project within a

“solution-space” phase, rather than a “problem-space” phase. But,

in its role as sketch, running code serves a concrete exploratory

purpose in evoking what a solution could look like or work like,

just as a hand sketch might.

7.2 Design Practices: Time Compression

While introducing design-related controls in Pail helped users

consider approaches more broadly, Pail sometimes overwhelmed

designers with too much incoming information with a low signal-

to-noise ratio. This risks that users will ignore this information,

even when structured to support design.

Our observations of this overlead speak to one possible cause: a

design process altered through compression in time by automation.

A typical design process in program design relies on individual

humans to write code, test applications with users, consider and

enumerate alternatives and design rationales—and these activities

as a result are paced at a human timescale. In Pail, however, these

activities are all accelerated, with agents providing information on

multiple facets either concurrently or in quick succession. Given

this acceleration, the potential for overload should be clear. One

question, then, is how and why designers choose to direct their

attention among this accelerated information stream, and what

role expertise plays in choosing what to consider carefully, what to

skim, and what to ignore.

Such an understanding of designer needs and behaviors would

enable future systems to be created with an understanding of what

feedback is useful, when, and through what mode of delivery. This

is not a new problem: Horvitz identified that a major challenge

in automation is the selection of an “ideal action in light of costs,

benefits, and uncertainties” [28] as early as 1999.

Ultimately, making sense of the large amount of potential infor-
mation generated by LLM-based agents and other cognitive tools

will require a new layer of interaction between human users and

the underlying agents producing these insights. The research com-

munity is not short on approaches to handling large amounts of

data, even when that data changes incrementally over time. But

handling large mounts of data that change substantially over time,

in contexts where it is hard to assess which of that data is critical

to the user, is a challenge that we have only started to consider.

7.3 Managing “More Information” vs. “Better
Information”

It’s also not clear who will wield the power that comes with con-

trolling the information layer. Li et al. [39] have argued that tool

designers wield a lot of power to shape thought and practices in

the domain of creativity support tools. Vaithilingam et al., [64],

meanwhile, suggest that LLM-assisted techniques like dynamic

grounding can return some of the power to users by allowing tools

to adapt to where humans are, rather than forcing humans to adapt

their ways of thinking and practices to the tools’ capabilities as

defined by their designers.

Our Pail experiences raise the concern that we are on the brink

of handing a lot of power to the IDEs, LLMs, and prompt developers

building the next generation of tools, because each new LLM-based

design affordance demands attention, and showing them all at once

will require a major learning curve. Who directs attention, if not

the tool? In a typical creativity support tool, the designers of the

tools themselves wield direct control over tool behavior, but in LLM-

powered systems, designers often cede varying degrees of control

to black-box models they did not even have a hand in training. We

may be moving from a formal system of rules and practices that

are at least discoverable and interpretable, to an analog world of

prompt-driven components whose very behavior is both inherently

unpredictable and also dependent on the model it happens to be

executed against. Our experiences with attention overload in other

realms (e.g., social media [50]) suggest that this future may be less

empowering for users and developers, rather than more.

A key design decision that will shape how systems wield this

power goes beyond what information they surface to users and

how, and to what information they generate and then choose to

surface. While a major area of design has been and will continue

to be principles for managing information better, our work with

Pail also asks if there better information to be managing in the first

place.

8 Limitations and Future Work

Pail represents one possible point in the design space of AI-supported

program design. We did not explicitly compare Pail with ChatGPT
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or Claude in our evaluation because it was not our goal to show that

Pail is more effective than those baselines, but rather to identify

the challenges that arise when explicit design support is integrated

into an IDE like Pail. We hope our work here opens up a design

space with some initial, critical insights about what the community

should tackle next.

That said, there are two key limitations of this work that future

work should address: the generalizability of Pail and transitions

across levels of abstraction when programming with LLMs.

First, Pail isn’t intended for for every programming task, nor

for every programmer. Though Pail helped get participants started

regardless of design background, some level of design process lit-

eracy is required to make effective use of Pail. Design process

literacy can be taught, of course—or it can be designed into tools

like Pail. For example, recall that participants were most willing to

engage with ConversationAgent’s questions about the end-user

and their needs when the agent was not simultaneously producing

changes to the program that a user could be testing—providing code

in this context was actively counterproductive. This observation

points to a compelling, but also concerning, mechanism by which a

tool like Pail could encourage more consideration of various parts

of the design process: hold the project hostage by simply refusing

to produce any code until the user has considered what the tool

wants the user to consider.

Second, regardless of approach, designers need to operate across

abstraction levels, knowing when to pop up to a high level from

the weeds, and when to deep dive towards a point solution in order

to better understand a particular neighborhood within the design

space. Pail currently supports a few levels within its hierarchy of

abstraction: code, a layer of established program requirements and

decisions embedded in that code, and a set of higher-level design-

related concerns. As recently noted by Vaithilingam et al [64], de-

sign decisions happen in a fractal pattern, with many decisions

across many levels of abstraction. Future LLM-aided programming

tools could provide finer-grained control over operation at different

levels of abstraction to provide greater control over and understand-

ing of generated code, as well as more targeted legibility for the

immediate subtask at hand. We contribute here a deeper under-

standing that there are substantial challenges designers will face

when transitioning across abstraction levels.

Supporting users identifying design problems and solutions, as

they handle an information overload and transition across abstrac-

tion levels, requires that we tool designers reckon with several

major open questions:

First, how much agency or initiative should automated systems

be given to set direction? It’s one thing to synthesize some code

for a user to evaluate—it’s another entirely to control when a user

considers their high-level goals for a project instead of staying

lost in the weeds, or to scope out a set of potentially-anchoring

alternative points in the design space.

Second, if programmers spend less time writing code and more

time providing higher-level instructions, then managing attention
in the face of too much data and unknown signal-to-noise ratios
among that data will become critical. How can systems correctly

decide what data to show users, and when?

9 Conclusion

Through this work, we explored the implications of LLM-aided

program design, focused on support for problem formulation and

assessing solution suitability. Pail, our design probe, encourages

developers to follow a user-centered design process and tracks re-

quirements discovered and decisions made through prototyping.

Through our user study, we found some evidence that this kind

of assistance can be helpful in broadly considering the program

design space, but also uncover a set of challenges around man-

aging attention and maintaining awareness of program updates,

pointing to broader questions and trade-offs across generating and

sharing information, ensuring information is relevant to users, and

balancing agency between users and their new generation of tools.

10 Disclosure

The authors used ChatGPT for minor copyediting tasks.
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