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Figure 1: System Overview: (Left) View of edits and spatial annotations made in scene. (Right) Pipeline overview of system
including three distinct modules to edit scenes: edit radiance fields, create new objects, and create 2D stable diffusion renders
of scenes.

ABSTRACT
Authoring 3D scenes is a central task for spatial computing applica-
tions. Competing visions for lowering existing barriers are (1) focus
on immersive, direct manipulation of 3D content or (2) leverage
AI techniques that capture real scenes (3D Radiance Fields such
as, NeRFs, 3D Gaussian Splatting) and modify them at a higher
level of abstraction, at the cost of high latency. We unify the com-
plementary strengths of these approaches and investigate how to
integrate generative AI advances into real-time, immersive 3D Ra-
diance Field editing. We introduce Dreamcrafter, a VR-based 3D
scene editing system that: (1) provides a modular architecture to
integrate generative AI algorithms; (2) combines different levels
of control for creating objects, including natural language and di-
rect manipulation; and (3) introduces proxy representations that
support interaction during high-latency operations. We contribute
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empirical findings on control preferences and discuss how gener-
ative AI interfaces beyond text input enhance creativity in scene
editing and world building.
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1 INTRODUCTION
Spatial computing applications such as Augmented and Virtual
Reality rely on 3D content and scenes. Thus, creating appropriate
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tools for authoring and editing 3D content has been a long-standing
key challenge for HCI researchers. Traditionally, mesh-and-texture-
based approaches have been used to author 3D content. Various
research efforts to introduce better editing techniques notwith-
standing (e.g., [8, 29]), the expertise hurdle to create and modify 3D
content in this way has been high, generally leaving such authoring
to a small number of expert users.

One avenue to lower the authoring barrier has been to embrace
authoring in VR (e.g. Google Tiltbrush [11]), where direct 3D input
is possible through VR controllers (or gestures) in an immersive
environment. This approach decreases the gulf of execution [28]
inherent in prior approaches to modeling 3D content using 2D
input devices.

More recently, two additional developments hold the promise
of reducing authoring burdens. First, novel approaches for repre-
senting 3D scenes based on radiance fields (e.g., NeRFs [40] and 3D
Gaussian Splatting [34]) allow for straightforward capture of pho-
torealistic environments from real scenes using common cameras,
instead of having to model objects from scratch. Second, generative
AI developments have introduced novel ways of editing 3D scenes
like radiance fields at higher levels of abstraction, e.g. through text
instructions (as in Instruct-NeRF2NeRF [24]). While offering the
ability to edit at a semantic level rather than a lower geometry
level, such techniques also tend to be compute-intensive and not
yet amenable to run in realtime.

The different approaches—rapid direct manipulation on the one
hand and high-level instruction-based editing on the other hand—
recall long-standing arguments in the HCI community on the bene-
fits of direct control vs. delegation [55]. In this paper, we investigate
if it is possible to unify the complementary strengths of real-time,
immersive editing on the one hand, and generative AI-based ap-
proaches to high-level scene editing (with high latency) on the
other hand under a common interaction framework. We believe
that generative AI can enable new forms of interactions through
natural language and could lower the barrier to entry for users
with limited 3D modeling experience and could make it easier for
users to express creative ideas, while making it faster or easier to
prototype for experienced users.

We introduce Dreamcrafter, a Virtual Reality 3D content gen-
eration and editing system assisted by generative AI.1 The core
idea behind Dreamcrafter is to use direct manipulation for spatial
positioning and layout; and leverage generative AI for editing style
and appearance of objects. Because generative AI edits are unlikely
to run in real-time, Dreamcrafter introduces rapid proxy represen-
tations, e.g. using a 2D diffusion model to create a stand-in image
for a longer-running 3D generative task. Dreamcrafter enables both
2D (image) and 3D output.

Dreamcrafter makes three technical contributions: (1) Scene
editing system with photo-realistic scene representations. We use
radiance fields (3D gaussian splatting) instead of traditional mesh-
based representations. (2) Modular architecture. This enables the
system to continuously integrate state of art generative AI models
and leverage both 2D and 3D proxy representations. (3) Flexibility
in scene editing. A combination of voice prompts with natural

1dream-crafter.github.io

language instructions and sculpting using primitives gives both
general and advanced users extensive flexibility.

We chose to make Dreamcrafter a VR immersive editor since it
affords interactions such as voice input and direct manipulation
which are more natural in VR and allow for spatial 3D input. Radi-
ance fields are intrinsically realistic and immersive, and are well
suited to be viewed in VR, making their creation within VR repre-
sentative of a user’s experience. Radiance fields are being applied
to a variety of applications such as in geospatial systems [13], gam-
ing [4], social experiences [62], e-commerce [6], and education [46].
There is rising industry interest in systems with immersive radiance
fields such as Meta Hyperscape [5], Varjo Teleport [60], Niantic
Scaniverse [54] and Gracia AI [3] which envision using radiance
fields (specifically gaussian splats) for social, entertainment, and in-
dustrial applications. However, this rise in immersive radiance field
usage reveals a gap in studying HCI systems and interactions tai-
lored for editing and creating them. Recent interfaces for generative
media, such as Luma Dream Machine [4] and Runway ML [42], en-
able users to articulate creative visions through 2D representations
like images and video, often using natural language instructions for
refinement and conceptualization. With Dreamcrafter, we aim to ex-
tend this paradigm into 3D by imagining an analogous spatial editor
enabling users to engage in immersive world-building, translating
similar interactions such as using natural language instructions
while facilitating exploration of generative outputs akin to current
systems. Traditional workflows for 3D modeling is time consuming
and expensive to create large detailed scenes. With Dreamcrafter,
users, with minimal 3D modeling experience can create and edit
3D scenes for general applications which could be applied to game
development, interior design, or virtual production for filmmaking.

We investigate how users decide between different levels of con-
trol over a scene and how they use proxy representations through
a first-use study with seven participants. Using Dreamcrafter, par-
ticipants could either (i) generate entire objects using AI or (ii) first
construct 3D objects using pre-defined shapes (i.e., spheres, cubes,
etc.) and then stylize the construtions using generative AI. While
participants created more objects using the former interaction, they
felt more in control with the latter interaction. Regardless of gener-
ation approach, participants found the proxy previews useful for
scene composition.

2 BACKGROUND
We give a brief overview of Radiance Fields (NeRFs and Gaussian
Splatting) and generative image models.

Radiance Fields. Recent years have seen a move from traditional
3D graphics using meshes and geometries to more photorealistic
rendering techniques, such as Neural Radiance Fields (NeRFs) [40]
and Gaussian Splatting [34]. Radiance fields are 3D representations
of scenes or objects, as a function of radiance given position and
view direction, that can exhibit photorealistic view dependent ef-
fects. NeRFs are 3D representations that optimize a volumetric 3D
scene as a radiance field using a neural network trained on a set
of images. 3D Gaussian Splatting is akin to NeRFs. The main dif-
ference is that Gaussian Splatting uses 3D Gaussians to support
faster training and rendering via differentiable rasterization for
high-quality real-time visualizations. These techniques have been
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shown to be highly effective at modeling details with realistic light-
ing, shadowing, and surfaces for real-world captures. And, with the
increase in applications requiring 3D content, these models can be
effectively used to quickly capture and create assets.

Generative Image Models. Stable Diffusion [52] is a deep learning
model for synthesizing, or generating, images from text inputs
using a diffusion model. ControlNet [67] is a network architecture
enhancement to text-to-image models to condition the model on
an input image, generating stylized outputs given a text prompt.

3 RELATEDWORK
The most related prior work falls into three areas: 1) novel 3D
scene representations and tools for using them 2) generative scene
building systems and 3) creation systems in VR. We review each
area in turn.

3.1 Generating and editing novel 3D
representations using Radiance Fields

Several recent rendering techniques build upon NeRFs [40] and
3D Gaussian Splatting (3DGS) [34]. For example, LERFs [35], or
Language Embedded Radiance Fields use CLIP embeddings [50] to
allow users to query a NeRF using natural language to determine
regions of interest. ConceptGraphs [21] uses a similar technique
with CLIP embeddings but processes a more traditional 3D repre-
sentation of point clouds rather than NeRFs. These developments
have indicated the importance of object-centric labeling and editing
in the systems that are built and have guided our design of editing
components of 3D scenes in VR. By focusing on radiance fields,
a 3D representation that doesn’t enable very low level manipula-
tions like meshes, we hope to lower the barriers to a wide range of
3D representations (such as video), tasks, and applications in the
future.

While effective, these 3D representations are difficult for end
users to create, manipulate, and use. Recent work in HCI literature
such as SharedNeRF [53] demonstrate the enhanced benefits of
using photorealistic 3D representations for showcasing objects that
would be harder to reconstruct with traditional methods, but its
system is unable to directly edit or manipulate the NeRF. Additional
efforts to make NeRFs more approachable have included consumer
facing systems such as Luma AI [4], and research friendly APIs such
as Nerfstudio [56] and Instant-NGP [43]. Instruct-NeRF2NeRF [24]
allow users to provide as input a text prompt and an existing NeRF
and output a new NeRF stylized according to the text prompt, re-
lying on 2D text and image conditioned diffusion models such as
InstructPix2Pix [9]. We interface with Instruct-NeRF2NeRF to allow
users to edit their 3D scenes and objects. DreamFusion [48] also
allows users to build a NeRF or mesh from a text prompt.

Approaches to interactive editing of radiance fields are emerging.
NeRFShop [30] allows selecting, transforming, or warping NeRF
objects in a single scene with real-time feedback; however it lacks
generation capabilities. GaussianEditor [14] presents a web based
interface for 3DGS including object generation, but crucially does
not offer real-time proxies, making edits visible in 10-15 minutes.
Neither offer immersive interfaces.

3.2 Generative Scene Building Systems and
Interfaces

Previous work has explored how to build editing interfaces for
generative AI models for 2D images or 3D meshes. WorldSmith [16]
generates 2D scenes composed of multiple text prompts and blends
across the generated images tiles. Similar to Dreamcrafter, it allows
users different abstractions of editing such as to generate images via
prompting or sketching but offers neither immersive interactions
nor 3D results. Text2Room[26] generates a fixed 3D room given
a single text prompt. Dreamcrafter allows editing of existing 3D
scenes and generation of individual objects. "What’s the Game,
then?" [31] demonstrates capabilities of LLMs in creating scene
functionality at runtime. Recent startups such as WorldLabs [37]
demonstrate text and image to 3D scene systems using generative
image and video models and are currently exploring interfaces
for editing and creation tools. Recent commercial systems such
as Dream Machine [4], Midjourney [39], and Adobe Firefly [1]
combine multi-modal image and text inputs for generative image
and video generation with an iterative design process, similar to
Dreamcrafter, but those systems are non-immersive, constrained to
the 2D generation space and lack spatially persistent scene creation
tools.

3.3 Creation Systems in VR
There is a long history of creativity tools and developing systems
in XR. 3DM [12] laid the groundwork by presenting a 3D model-
ing system operated via a 6-DoF mouse, offering a novel way to
interact with digital objects in three-dimensional space. Building
on this, ISAAC [41] introduced scene editing within Virtual En-
vironments, allowing for a more intuitive and immersive design
process. Coninx et al. investigated hybrid 2D and 3D editing [15].
CaveCAD[27] demonstrates an intuitive immersive 3D modeling
system. SculptUp[47], a system for freeform virtual sculpting of
organic shapes, enables artists and designers to conceptualize and
iterate on their creations in an intuitive manner that closely mirrors
the physical sculpting process. Furthermore, Google’s TiltBrush
[11] allows creators to paint with virtual light and textures, extend-
ing the canvas beyond the limits of traditional media. Similarly,
VR games like Dreams [18], Figmin XR [63], and Horizon Worlds
[62] have provided valuable insights into user interaction mod-
els, offering a glimpse into how VR can facilitate complex design
tasks while maintaining user-friendly interfaces. Immersive pro-
totyping tools in various applications have also been explored. In
a review of the landscape of XR tools[44], Nebeling emphasizes
the importance of context and story in XR design as well as the
need for tools that complement existing workflows and support
rapid prototyping. Henrikson et al. [25] explore how XR tools can
be applied to the filmmaking process through prototyping with
digital storyboards. Pronto [38] demonstrates an XR system for
rapid prototyping AR experiences with proxy drawings. Han et
al. [23] demonstrate the next steps in HCI design and interaction
with virtual environments by increasing accuracy and range of
physical gesture recognition, an approach that lends itself to more
natural and user-friendly interaction with the surrounding virtual
environment. Several projects explore immersive scene editing for
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related domains. Flowmatic [65] explores arranging interactive el-
ements. 360proto [45] enables prototyping VR and AR interfaces
through paper mockups. 360proto can help visually arrange scenes
through layering but has limited editing capabilities. Neither fo-
cuses on interactions for generative AI. There is recent work in
exploring how generative AI can be used for VR scene creation.
Manesh et al. [2] discuss how people form natural language in-
structions when creating scenes in VR. VRCopilot [66] introduces
an immersive scene creator that uses generative AI for designing
room layouts. These systems explore the use of LLMs in assisting
scene creation (positioning and layouts), but Dreamcrafter lever-
ages generative AI for designing objects in scenes with support
for non traditional 3D representations like gaussian splats. Davis
et al. explore methods for collaborative AI systems to navigate de-
sign solutions for generating 3D objects from GANs in VR [58]. In
comparison, Dreamcrafter provides a full 3D editor incorporating
additional generative image models for staging scenes instead of
primarily exploring generations of objects.

More recently, researchers have begun to explore the incorpo-
ration of generative AI in virtual environments. For example, the
Large Language Model for Mixed Reality (LLMR) framework [17]
leverages Large Language Models (LLMs) and the Unity game en-
gine for real-time creation and modification of interactive Mixed
Reality experiences, showcasing the potential of LLMs to facili-
tate intuitive and iterative design in mixed reality applications.
Style2Fab[19] also demonstrates the ability of generative model in
personalized 3D model generation. The Dynamics-Aware Interac-
tive Gaussian Splatting System [32] also enables the creation of
animated and interactive experiences within virtual reality settings.

Our system leverages generative AI and natural language to
assist in 3D scene editing in virtual environments, but prior and
concurrent works don’t aim to create creativity tools leveraging
radiance fields.

4 DESIGN GOALS
Based on our review of related work, we identified a gap in research
on interaction techniques and systems for working with emerging
radiance field technologies and generative AI. Current generative
AI interfaces are predominantly focused on image or video outputs
and rely heavily on text-based prompts, with some recent advance-
ments exploring multimodal, chat-based interactions. However,
these systems remain limited in their ability to support the creation
and manipulation of 3D content. With Dreamcrafter, our goal is to
design a 3D editor capable of not only supporting radiance fields
but also accommodating future implicit 3D representations, such
as undiscovered formats for 3D video or world models [22]. This
approach addresses the need for tools that can evolve alongside
advancements in generative AI and 3D representations, enabling
users to interact with and edit complex 3D environments more
effectively.

We aimed to develop tools for a design space that supports inter-
actions with high levels of abstraction, generalizable across various
3D representations. Our design goals were conceived by analyz-
ing recent advancements in computer vision and graphics research,
where we identified limitations in new 3D representations (of NeRFs
and gaussian splats) and generative AI models for images/3D and

worked to design interaction techniques that could seamlessly inte-
grate these representations and interactions into a 3D editor frame-
work. We also examined the affordances of generative models, such
as natural language instructions and diffusion-based 2D and 3D
generative models, to inform our design process. Drawing inspi-
ration from existing 2D generative AI interfaces like those used
for image or video generation, we focused on interactions such as
natural language prompts and multimodal (image + text) inputs
that allow users to refine their outputs. Based on this, our approach
bridges the gap between emerging generative AI capabilities and
intuitive, flexible interaction techniques for future implicit or ex-
plicit 3D representations. Making Dreamcrafter an immersive VR
editor allows us to integrate more natural interactions like speech
and helps the user design the environment while experiencing it.

Therefore, we formulated the following design goals:
• Focus on creating and editing radiance field objects in
VR. We want to support users in populating 3D scenes with
radiance field objects. This may involve updating objects al-
ready in the scene or creating completely new objects. Users
may want to generate new objects based on very specific
prompts which not exist in a catalog or want to create objects
with more controllability in a specific style to match other ob-
jects in the scene. Generating objects is faster than searching
through a library and is ideal for adding scene-specific ob-
jects not already available especially when building stylized
scenes.

• Enable both directmanipulation and instruction-based
editing. Users may prefer different levels of control for var-
ious scene editing tasks. For example, users may want to
directlymanipulate objects for detailed edits while preferring
natural language instructions for larger scale edits. Users
should have access to both.

• Offer modular architecture to allow integration of fu-
ture generative AI advances. An important aim of Dream-
crafter is to provide users with state-of-the-art 3D object
editing and generative models, so a modular framework is
necessary. In the fast-paced field of computer vision, SOTA
models are introduced rapidly, and to address this, we de-
signed our system to easily integrate new methods and sup-
port a range of interactions, including generative models that
translate low-fidelity inputs to high-fidelity outputs such as
through image re-stylization.

• Preserve real-time interaction regardless of the latency
of editing operations. For real-time scene editing, users
should not be hindered by the system’s latency. In the event
that a process cannot be performed online, users should have
access to previews of the edits they have made to the VR
environment. This is motivated by the limitations of existing
computer vision methods for generation and editing, which
are often computationally intensive and time-consuming

5 SYSTEM DESIGN AND IMPLEMENTATION
Dreamcrafter provides an interface to edit and generate radiance
field objects using generative AI-enabled tools. Dreamcrafter sup-
ports different levels of user control and gives real-time proxy
representations to preview time-consuming edits and introduces
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Figure 2: Dreamcrafter system overview. Modules process-
ing pipeline: The Unity project sends API calls to the broker
server to run instructions from specific generation modules
and their outputs get sent back to the Unity project. Online
modules are run for previewing generations, and offlinemod-
ules are run after editing is complete.

new workflows leveraging image diffusion models (i.e., Stable Dif-
fusion). Users can select fixed regions in space or existing objects
in the scene to apply spatial annotations. Existing or pre-captured
radiance field objects can be added to the scene via an object menu.
Generations and edits can be re-done or deleted. Each type of edit
and module is designed in the framework to be interchangeable
and modular allowing new types of interactions to be added in the
future, or replace existing ones. Spatial annotations are added to
objects or spaces that are assigned edits with corresponding proxy
representations based on edit instructions. Figure 1 shows spatial
annotations applied in a scene.

5.1 Key interactions
Dreamcrafter supports four interactions for moving, editing, and
generating new radiance field objects.

Figure 3: Object transformations and direct manipulations:
(Left) Positioning object in the scene (Center) Rotating object.
(Right) Scaling object

5.1.1 Move objects. Users can move objects (generated or radiance
field based) with spatial manipulations with hand movements and
VR controls. Objects can be positioned, rotated, or scaled within
the scene. Physics can be applied to help align the objects or stack
generated objects. Figure 3 illustrates this interaction.

Figure 4: Radiance Field Object Editing with preview: (Left)
Edit variants are presented to a user. (Center) Displaying
selected edit preview as a spatial annotation. (Right) Fully
processed 3D edit replaces the original

5.1.2 Edit radiance field objects via prompting. Radiance field ob-
jects can be given stylistic or basic structural edits by pointing at
an object and speaking an instruction, e.g. “Make this chair chrome
and futuristic.” See Figure 4. A render of the object is given to the
Instruct-Pix2Pix module, which applies the instruction to show as a
2D preview of the edit. We chose to use Instruct-Pix2Pix to preview
this edit since it is a 2D equivalent of the 3D edit modules we use.
Users can select from three edit variants, which will be applied for
the final 3D object edit. Users can re-prompt edit instructions to
quickly iterate and preview before running a time consuming full
3D edit. Edits take approximately 10 seconds to generate previews.
Objects can be duplicated, re-edited, or deleted.

Figure 5: Object Generation via Prompting: (Left) Object gen-
eration variations from speech input. (Center) Displaying
selected generation preview as a spatial annotation. (Right)
Fully processed 3D generation in the scene.

5.1.3 Generate objects via prompting. Users can generate objects by
pointing at the ground and speaking the prompt of the object they
want to create (Figure 5). This sends an API call to the 3D generative
module that includes Shap-E [33], which generates a low fidelity
mesh and render, and the render is stylized using depth conditioned
ControlNet [67] with the original spoken prompt added with tags
for photorealistic outputs. Optionally, the object generation and
image stylization module can be themed to the scene through in-
painting and masking methods. The user can select from three
stylized 2D image variants of the object which are generated via
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ControlNet running with different random seeds, allowing greater
variation in texture and style and slight changes in overall shape.
Generations take approximately 15 seconds to generate previews.
During an offline process, the full fidelity 3D objects are generated,
exported as textured meshes, and placed in the scene.

Figure 6: Object Generation via Sculpting: (Left) Sculpting
toolkit to create primitive shape arrangement (Center) Dis-
playing stylized sculpted object preview as a spatial annota-
tion. (Right) Fully processed 3D generation in the scene.

5.1.4 Sculpt then stylize objects. Alternatively, users can generate
new objects by creating an arrangement of basic 3D primitives (i.e.,
spheres, cubes, and cylinders) (Figure 6). A limited set of tools are
provided to position, rotate, uniformly scale the shapes to "sculpt"
an coarse low fidelity 3D shape. To make a higher fidelity textured
model, the tool then takes a snapshot of this arrangement, and
stylizes the render with depth conditioned ControlNet conditioned
with a user-given prompt of the intended object. The stylization
with ControlNet (or a similar depth conditioned re-stylization image
model) essentially takes in an input image and text prompt, and
re-stylizes the image by changing it’s texture improving its fidelity,
even slightly refining its shape without changing too much of its
general structure. Once the user confirms the stylized and sculpted
2D generation, the full fidelity 3D object is generated offline with
an image-to-3D generative model, exported as a textured mesh, and
placed in the scene. We decided to provide this method of object
generation to give users finer control over the generation compared
with a text prompt and another method to translate low fidelity
inputs to high fidelity outputs in 3D (translating existing recent 2D
sketch to image systems to 3D editors) which is a new interaction
possible with generative AImodels, not found in traditional 3D tools
like Unity or Blender. This implementation limits users to create
shape arrangements but extensions could include more sculpting
tools or free form 3D drawing.

5.2 Radiance Field Objects
Users can add radiance field objects or environments into the scene
from a library of pre-captured objects. In our implementation we
use gaussian splatting objects we captured ourselves which are
trained and processed in Nerfstudio and Luma AI. Captures are
pre-processed by segmenting individual objects and imported into
Unity as ply files. To make them selectable and add collision physics
in Unity, we have amesh inside the radiance field object that enables
interactivity and anchor the Gaussian Splatting object to the mesh.

5.3 Proxy representations: Labels and Previews
Proxy representations are intended to help users see the impact
of their editing operations in real time. There are two types of
proxy representations: labels and image previews. Figure 4 (center)
and Figure 5 (center) show the labels and image previews. The
labels show the prompts users have spoken aloud as commands to
the generative AI modules (e.g., “make the sofa blue”). The image
previews show 2D versions of the anticipated generation. These
image previews are generated using Instruct-Pix2Pix which is the
underlying 2D image editing system used for the 3D radiance field
editing system, Instruct-NeRF2NeRF.

Both the labels and image previews are associated with radiance
field objects in the scene. This is done through a spatial annota-
tion framework we developed. The framework logs each object’s
positions, object type, generative AI prompt, and image preview
to a JSON file used for 3D generation and replacement, which we
discuss next.

Good proxies should be fast to generate and accurate in preview-
ing the final object. Dreamcrafter uses 2D image proxies because
existing 3D object editing and generation pipelines use 2D images
under the hood. For example, Instruct-GS2GS uses Instruct-Pix2Pix
to first generate a 2D image from a natural language prompt and
then transform the 3D scene into its edited version guided by the
2D images. By accessing the generated Instruct-Pix2Pix 2D image
as the proxy in seconds, Dreamcrafter is able to show a preview
quickly and, critically, by design, ensure that the 2D image is an
accurate proxy of the 3D object.

In other words, Dreamcrafter’s approach to generating proxy
representations contributes a generalizable template for leverag-
ing intermediate representations of high-latency 3D operations as
proxies.

Figure 7: Spatial annotations: tags and proxy representations
are placed over the radiance field objects and generated ob-
jects with given instructions and preview generations.

5.4 Modular System Design using Generative AI
modules

Dreamcrafter’s Unity client offers a modular interface to multiple
plug-and-play modules for real-time interactive and offline pro-
cessing tasks. The system is designed to easily update to newer
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iterations of these generative AI models, which are commonly de-
veloped due to rapid interest in this field.

5.4.1 Online Processing Modules. A set of generative modules are
used to create rapid previews visible in the VR scene. Radiance field
object editing tasks use Instruct-Pix2Pix, an intermediate model
used for the full 3D edit which runs in 15 seconds. the object gener-
ation via prompting instruction use an text to 3D module, Shap-E,
to generate a low fidelity mesh and NeRF render. This render is
then stylized with ControlNet conditioned on edges and the same
text prompt to create three 2D preview variant generations. We
use Shap-E since it creates a render of a single object and an ob-
ject centric generation than a regular text to image model, and
provides a close approximation of using a more detailed text to
3D system. Object generation via sculpting displays a 2D preview
generated via ControlNet conditioned on depth and a snapshot of
the arranged 3D primitives. The sculpted arrangement acts as a 3D
proxy representation.

5.4.2 Offline Processing. Using the JSON log output from the spa-
tial annotation system, Dreamcrafter makes instruction and tool
specific API calls for each generative AI module. A Python broker
server receives a server message from the Unity project and for-
wards instruction parameters (e.g., instruction type, text prompt,
image input) to the specified module. Figure ?? shows an overview
of the system architecture. Object generation uses a 3D generative
module Shap-E, and a 2D image stylization module ControlNet and
Stable Diffusion. The full object 3D generations use 2D-image to
3D-model models such as LGM [57], GRM [64] or any text-to-3D
based system. The final 3D object edits are done using Instruct-
NeRF2NeRF for NeRFs, or Instruct-GS2GS [59] for Gaussian Splat-
ting objects. Themodules are exchangeable and can be implemented
to use updated AI models. After the edited objects are added to
the scene, users can repeat the process and edit the scene again,
creating an iterative design process.

5.5 Scene Outputs
5.5.1 3D Scenes. After offline processing, fully edited scenes can
be viewed as a 3D Unity scene composed of radiance field objects
and meshes. Optionally, training images can be captured of the
scene to create a radiance field of the entire scene.

5.5.2 Magic Camera. Users can position a virtual camera, we call
the Magic Camera, which stylizes a snapshot of a view of the scene
given a prompt through an image re-stylizer (like ControlNet or
FLUX.1 Depth [36]) via multi-modal input (image + text prompt).
The resulting stylization gives a coherent and realistic composition
of the scene based on the content and arrangement of objects,
analogous to rendering a frame in a traditional 3D editor. The Magic
Camera is implemented as a virtual camera in the Unity scenewhich
the user can position and preview and enter text prompts via a
floating panel. A user can select to capture a snapshot which sends
a render of the Unity scene to the image re-stylizer ControlNet
module and the output stylized render is shown on the panel (takes
about 15 seconds). This stylizes all objects in the image snapshot
and can add additional detail to lower fidelity generated objects in
the render. We observed that the image stylization models were
able to implicitly detect the kind of objects when stylizing based

on their depth, and by mentioning the objects in the prompt, the
model correctly stylized the objects. In 9, just using the prompt
"realistic living room" and inputting the image of the room, the
model could detect the sofas and windows and accordingly stylize
them correctly. Likewise, for the holiday party scene, by inputting
the objects in the prompt (snowman, gingerbread house) the model
correctly stylized the objects based on the depth map of the input
image. In it’s current implementation, the Magic Camera is limited
to capturing only a single view and supports only a text prompt
with an image as input into an image re-stylizer. However, it could
be extended to support other multi-modal specialized prompts and
models such as camera trajectory or an additional style reference
such as for generative video models.

Figure 8: Magic Camera: The virtual camera an be reposi-
tioned with a panel previewing the stylized output from the
Magic Camera with the given text prompt.

This feature can be extended to act as a method of controlability
in AI generated images or video by using This 2D image output
as input to an image-to-video model. The magic camera output
image could potentially be used as input into to an image-to-3D
scene system [20] which would generate a 3DGS scene, editable in
Dreamcrafter. This could create an iterative design process where
a user could create a general layout of the objects and positions
in the scene, and can use the Magic Camera to stylize it, and then
iteratively edit the 3D scene. TheMagic Camera acts as a gateway to
other generative modalities and outputs such as video or 3D scene
generation and allows Dreamcrafter to act as a spatial interface for
video generation.

5.6 Additional implementation details
Dreamcrafter is implemented in Unity using the Unity XR toolkit
and MRTK plugins for VR support. Gaussian Splats were rendered
using an open source Unity Gaussian Splatting viewer [49], and
example splats were trained using the Nerfstudio splatfacto model
and Luma AI. The Unity app interfaces with the online generative
modules using a sending calls from a C# server to a python flask
server which makes API calls to separate generative with specified
parameters using a modified Diffusers library [61] for Shap-E and
Instruct-Pix2Pix. The ControlNet module is run on the Stable Dif-
fusion WebUI [7]. The radiance field objects (gaussian splats) in
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Figure 9: Magic Camera Outputs: (Top row) Scene inputs from the virtual Unity camera (Bottom row) Stylized image outputs
given the prompts: (Left) "realistic apartment living room", (Center) "realistic outdoor patio in university with cherry blossom
tree, chairs, benches, plants", (Right) "a holiday party in a hotel atrium, snowman, Christmas, gingerbread house". The image
stylizationmodel generates stylistically consistent and coherent photorealistic image outputs from the input scenes of composed
radiance fields and 3D models.

the scene are photorealistic and edits to these are photorealistic.
However, newly created objects using generative AI models are
not always photorealistic due to limitations in current 3D gener-
ative models. In the future, as these libraries improve, the system
could rely on newer libraries. This is possible because our system
is modular.

6 EVALUATION
Two research questions motivated the evaluation:

(1) RQ1 - Levels of control. How do users want control over
scene edits? Specifically, when do they choose to generate
objects via prompting or sculpting? Why?

(2) RQ2 - Proxy representations.What are users’ reactions
to the proxy representations? Are they sufficient for envi-
sioning final scene edits?

6.1 Study Design and Procedure
After participants gave informed consent, the researchers walked
participants through a tutorial introducing the interactions for
editing and creating objects in Dreamcrafter. The tutorial took ap-
proximately 30 minutes. Once participants practiced and expressed
feeling comfortable performing the interactions, they were pre-
sented with the scenario of designing a 3D environment for a winter
holiday party. They were asked to complete the following tasks:

• Dining area for six. Participants set up a dining area for six
people. The 3D environment was already populated with a
couple of tables and a chair that participants could duplicate
or edit.

• Photo area for party guests. Participants decorated an
open area for taking pictures. The task was to create a North
Pole scene by considering snowmen, elves, or trees.

• Gingerbread house. Participants created a gingerbread
house with two windows and one door.

• Unstructured editing. At the very end, participants were
given five minutes for free-form editing where they could
revisit any of the tasks above as they edited the scene to
their liking.

We designed the tasks such that they required a range of editing
and creating operations, where different modalities would likely
shine and showcase the flexibility of tools supported. The dining
area task was the most scaffolded, with relevant objects populating
the scene already and a small object library of radiance field objects
was given. We anticipated that this would encourage participants
to edit the existing radiance field objects or add relevant objects
from the object library. The photo area was more open-ended with
opportunities to place objects and generate new ones via prompting
or sculpting in an open area of the room.We use this task to examine
when users decide to prompt or sculpt and the benefits of the proxy
representations for scene composition. The gingerbread house was
the most specific task, likely requiring a significant amount of
control. For all the tasks, participants were encouraged to use any
interaction as they saw fit.

Upon completing the tasks, participants completed an exit survey
and interview. In total, the study lasted approximately 90 minutes.
The participants used Dreamcrafter in a Meta Quest 3 with PC link.
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Table 1: Evaluation: Different levels of control used.

The number of objects created using each approach are in parentheses.
Participants used a combination of editing existing objects, creating objects
via prompting, and creating objects through sculpting throughout the tasks.
Four out of seven participants used a combination of prompting and sculpt-
ing throughout the study, including sometimes for the same task. While the
majority of participants created the majority of objects via prompting alone,
participants reported gravitating towards sculpting to control generation.
ID Dining area Photo area Gingerbread house

P1 Edit (2) Prompt (1) Prompt (1), Sculpt (1)
P2 Prompt (2) Prompt (3) Prompt (1)
P3 Edit (2) Prompt (3) Prompt (3)
P4 Edit (1) Prompt (3), Sculpt (1) Sculpt (1)
P5 Prompt (4) Prompt (6) Prompt (1), Sculpt (6)
P6 Edit (2) Prompt (3) Sculpt (1)
P7 Edit (2), Prompt (1) Prompt (4) Prompt (1)

6.2 Participants
Participants were recruited via word-of-mouth through school tech-
related Slack channels (from VR courses and clubs), newsletters,
and mailing lists. Participants self-reported having relatively lit-
tle experience in VR (median=2/5). Four of the seven participants
had prior experience with 3D tools (Unity or Blender), and two
participants had prior experience with creative generative AI tools.
Participants were compensated $35 for their time.

6.3 Measures and Analysis
For each task, we recorded and analyzed videos for how partici-
pants manipulated objects (i.e., editing vs. creating; prompting vs.
sculpting) andwhy.We also thematically analyzed their open-ended
survey questions and interview responses.

6.4 Results
Overall, participants reported that Dreamcrafter helped them edit
the scene as theywished [P2, P4, P6, P7]. P5 expressed how the scene
they created using Dreamcrafter was “not what [they] thought but
more interesting.” due to the sometimes unexpected results from
the generative models.

6.4.1 RQ1: Levels of control. Overall, participants rated their suc-
cess in achieving their desired edits highly (Dining area: median=5/7,
Picture area: median=5/7, Gingerbread house: median=4/7). For all
tasks, participants more frequently generated objects using prompt-
ing instead of sculpting. Four out of seven participants used a
mixture of prompting and sculpting across the study tasks (Table 1).
Three even used both prompting and sculpting within the same
task. For example, P1 created most of the gingerbread house via
sculpting but then wanted to augment it with prompt-generated
windows.

When asked why they chose to create objects via prompting,
participants explained that prompting was easier to use [P2, P3, P4,
P5, P7]. Prompting helped them “save time” [P1], required less active
user involvement [P2], and resulted in “more polished” results [P3].
P4, explained, “The prompting tool did make it extremely easy to take
what I am thinking and make a relatively accurate depiction.”

Participants had mixed opinions on how well prompting served
their goals when they had specific details in mind. P1 and P6 ex-
plained that they preferred prompting over sculpting depending
on “typically how complicated I expected the object to be” [P6]. At
the same time, P4 reported “[the generated 2D proxy representation]
sometimes fell short in some minor details of what was described in
the prompt.”

In contrast to prompting, participants reported feeling they had
more control when sculpting then stylizing objects [P1, P4, P5]. P4
explained, “if I had an idea in my head that I know how I wanted
it to look like...it kind of had a little more restriction what the AI
used to create versus the prompting”. When asked when they chose
to sculpt, P1 and P5 explained that they preferred sculpting large-
scale objects, such as the gingerbread house. At the same time,
most participants, including P7 who did not use sculpting, wanted
to have access to more shapes [P4, P5, P6, P7] and finer grained
object manipulation [P2, P4, P6, P7], suggesting that sculpting may
ultimately be more desirable than we saw in our study.

6.4.2 RQ2: Proxy representations. Six out of seven participants pri-
marily relied on the image previews to get a sense of the scene’s
overall composition [P1, P2, P3, P4, P6, P7]. For example, P1 de-
scribed how the previews were “helpful to put stuff around and
see how it works for each other.” Similarly, P3 remarked how each
preview “helps for arrangement in the space.”

Participants also reported that the image previews helped them
visualize individual objects [P4, P5, P6]. For instance, P6 said “It
was easy to create an object that was somewhat close to what I was
envisioning based on the preview it generated.”. Participants would
re-prompt once or multiple times if they weren’t satisfied with their
initial generation for editing or object creation and would make
their prompts more refined on their intent.

Despite reporting that the were previews helpful for scene com-
position and object styling, when asked how sure they were about
how the final scene would look, P1, P2, and P6 reported feeling
unsure, rating their certainty at a 1 or 2 on the five-point scale.
The median score across all participants was a 3 out of 5. P5, who
found previews helpful for envisioning individual objects but not
the entire scene, pointed out a key limitation of the previews was
that size information was lost: “Some preview of the size an object
would take would be useful for just the prompting / not sculpting
part.” Therefore, proxy representations, while helpful for drafting
scenes and objects, are incomplete for fine-grained scene layout
and detailed editing.

Participants first envisioned and then described to the researchers
a scene based on the task instruction, then generated objects, and
finally positioned them. Some participants had a particular style
in mind (P1, P5) and tended to generate/edit objects to achieve
this style. Four participants (P1, P4, P5, P6) chose to use sculpting
for the gingerbread house construction task to control generated
details (e.g., placing two spherical windows above a rectangular
door). During the dining scene, most participants opted to use the
existing radiance field objects for tables and chairs. Four partic-
ipants further stylized the existing objects to be consistent with
their desired theme (e.g., Game of Thrones-esque).

6.4.3 System Limitations and Strengths. A primary limitation was
the scene’s physics. For six of the seven participants, rotating and
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arranging objects in the scene were difficult [P2, P3, P4, P5, P6, P7].
For example, when editing the dining area, P2 expressed “When
chairs would fall over, it was very hard to put them back up. Also, if I
wanted to rotate or move the chairs they would tend to change size,
so by the end most of the chairs were all different sizes.”

A noticeable limitation during the tasks was that the sculpting
tool was sometimes difficult to use effectively. It took some time
for the users to create the desired arrangement of shapes and users
wanted additional familiar functionality present in most other sys-
tems (duplication, grouping, deletion). This difficulty may have
influenced their experience and affected the accuracy of the com-
parison with prompting, which was much easier to use.

Another important limitation was inaccurate speech recognition,
which became a major burden for users relying on prompting [P1,
P2, P3]. Despite this, most participants relied on prompting for set-
ting up the picture area and gingerbread house, so we would expect
that improved speech recognition would lead to more reliance on
prompting. Related, because the system had a five second speech
detection window, P5 expressed wanting the system give them
more time to express all the details they had in mind. In addition,
the text-to-image models sometimes provided unexpected or low
quality generations which required users to re-prompt the system
multiple times in line with limitations of current image generation
models, which some participants were aware of.

Other technical challenges that participants reported were feed-
back time while waiting for Stable Diffusion results [P1, P5], awk-
ward VR controller mappings [P6, P7], discomfort in VR [P2, P6].

Users could re-edit radiance field objects to have them match
their intended style, and typically iterated a few times to refine
their prompt. The three generated previews helped users choose
their selection. Participants expressed their reaction to the Magic
Camera as "cool" [P1, P6, P7] and "useful" [P3], and some found the
generations interesting [P5, P6] and "more thematic" [P5]. However,
some expressed that the generations were sometimes "confusing"
[P3] or not what they "envisioned" [P5] and that it "does not always
align with what is presented" [P6].

Despite challenges with object manipulation and speech recog-
nition, all participants expressed wanting to use Dreamcrafter in
the future for a myriad of reasons: interior design [P1, P3, P6, P7],
“my creative side” [P1], CAD in engineering [P4], and video game
design [P5]. P2 preferred to use a non-VR version. For P5, P6, and
P7, generating objects via prompting was the best part of the sys-
tem. This suggests that even with user experience issues, providing
multiple forms of user control, proxy representations, and access to
generative AI modules were desirable for diverse spatial computing
applications and users.

6.5 Revisions to System
Based on our preliminary user study, we updated the system to
address user concerns and improve existing features. Based on feed-
back regarding the 2D proxies (specifically from P5’s comments
on scene composition), we implemented 3D proxy representations
for object generation. This method imports the intermediate low-
fidelity mesh generated by Shap-e which can then be placed and
scaled in the scene and give the users a better sense of the object

placement, as well as work better with the Magic Camera by pro-
viding a reference for an object. We show a comparison between
the original 2D and new 3D proxy in Figure 10.

Figure 10: 3D and 2D Proxy Representations: (Left) New 3D
proxy showing a low fidelity mesh preview (Right) Original
2D proxy representation with image preview

To prevent the need for users to over-explain a prompt to get a
detailed stylistic generation as we observed in our study, we also ex-
perimented with the concept of generating more detailed prompts
with additional scene specific context by appending specific key-
words and prompts to the object generation prompt to make the
generation stylistically consistent with the scene objects. We use
GPT-4o with vision and prompt “Act as an AI world building as-
sistant and given this is the view from my vr headset, I want to use
speech to generate a new object in this space and given the prompt, a
ML model creates a 3D object out of it. Given a prompt and image,
I want you to make sure the object appears stylistically similar to
the scene shown in the image and other objects by adding additional
keywords to the prompt to describe the color, material, and other
structural details. I will tell you a prompt and give an image and you
will give the slightly longer version of the prompt with the detail to
make it stylistically consistent.” Given an images of the scene and a
very short prompt of the object, it adds descriptions of materials
and colors so the generated object matches with other objects in
the scene. We experimented with this pipeline independently, but
have not integrated it in the full system yet.

7 DISCUSSION
We investigate how to incorporate the benefits of real-time, immer-
sive editing and the advantages of high-level scene editing using
generative AI. We develop and evaluate the Dreamcrafter system,
which provides a modular architecture for generative AI algorithms,
offers different levels of interactive control, and leverages proxy
representations to show previews of high-latency edits to radiance
field objects.

Through a preliminary first-use study, we find that users, includ-
ing those without VR or scene editing experience, find the direct
manipulation (sculpting) and natural-language based (prompting)
interactions useful for editing and creating objects. Most use a
mixture of both interactions. Sculpting objects and then stylizing
them with generative AI helps participants feel they have more
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control over the generation process. Yet, participants create more
objects using only natural language prompts. This is not surprising
given the relative speed with which generative AI models can create
object proxies (previews) and being given a selection of variants
which reduces the chance of selecting unfavorable generations. In-
terestingly, despite the control direct manipulation affords them,
participants preferred generative AI-based object creation over
sculpting when they had very specific details for what they wanted
objects to look like. These findings suggest that sculpting may be
useful for giving the general shape of an object while prompting
is useful for its specifics. Both sculpting and prompting appear to
serve different purposes in users’ design processes, so supporting
both forms of control is necessary for scene editing tools to support
a diversity of creative paths and styles [51]. Using generative AI
in these workflows helps automate intensive scene creation tasks
such a 3D modeling and texturing, but at the cost of finer grain
control and unpredictable quality of generations. Such systems like
Dreamcrafter can limit functionality and workflows to the system
or model capabilities which could influence the user’s artistic ex-
pression. As observed in the study, participants appreciated the
generations and usually found them interesting but left it to chance
if the generations were of high quality or of original intent. We no-
ticed that some preferred to see what the system created and used it
as inspiration for either re-prompting or creating new objects while
others wanted fine-grained control which minimized the chance
of unintentional generations. Supporting both creative processes
is important for lowering the barriers to 3D scene creation in the
future.

Furthermore, participants found Dreamcrafter’s 2D proxy repre-
sentations of high-latency 3D object editing and creating operations
useful for editing 3D scenes. This suggests the importance of real-
time feedback for spatial computing tasks. This also suggests that
leveraging 2D generation for 3D scenes may be a promising path
forward for providing realtime feedback. We find our study opens
future directions for research in further evaluating using immersive
editing, adding additional multi-modal interactions, and measuring
cognitive load of participants. Additionally, providing both text
and image proxy representations may be especially important for
future semantic, generative AI-based scene editing systems. We
believe Dreamcrafter’s proxy representations, though designed for
image and 3D systems can be generalized for other visual outputs
from generative models such as video. We hope that using real-time
proxies could be a contribution to graphics research in enabling
real-time interactions for longer processes.

Overall, in Dreamcrafter, we explore not only the feasibility
but also the benefits of providing both rapid direct manipulation
and high-level instruction-based editing support in 3D scene edit-
ing. Through varying levels of control and proxy representations,
Dreamcrafter is a step towards continuing to lower the barriers to
3D scene editing, especially for emerging graphical representations
such as NeRFs and Gaussian Splats.

Applicability to future user interfaces for generative models. We be-
lieve that Dreamcrafter could also act as a world creation or staging
tool for other generative AI design systems for 2D or video output,
we call spatial prompting. With the inception of recent advances in
generative models, we believe that there is a desire for more visual

interfaces to image/video generative models in consumer applica-
tions. A system we explored during the project’s development was
using the Magic Camera to pre-visualize stylized scenes through
ControlNet and Stable Diffusion based on the construction of a
scene of only primitive objects, created and arranged within the VR
interface. Even with minimal object detail (e.g., cubes as a couch),
the system produced highly stylized, recognizable scenes and ob-
jects based on a single global scene prompt. Future improvements
could involve tagging objects for individual stylization and convert-
ing 2D renders into 3D scenes. Dreamcrafter could serve as an early
exploration into spatial prompting systems that offer more con-
trol for 2D/3D/video scene generation systems beyond limited text
prompting interfaces which are currently in SOTA consumer appli-
cations. Scenes and objects could be designed at a higher abstraction
level through primitive objects. These lower fidelity representations
are much easier to design and iterate, and can offer a variety of
different higher fidelity generations from the given arrangement
of primitives using methods from stable diffusion and ControlNet
generalized to 3D objects and scenes. These lower fidelity proxy
representations, optionally paired with semantic information like
text prompts, could help add controllability in 3D scene genera-
tions. Arrangements of proxy representations could also be sourced
from other mediums such as images or videos of arrangements of
physical objects or gestures/motion from users, potentially using
an LLM to interpret vague instructions. In our implementation of
Dreamcrafter, we primarily use gaussian splats as the radiance field
3D representation, but we anticipate that our interactions and sys-
tem are generalizable to future implicit 3D representations. In the
case of virtual production and pre-visualization, methods discussed
above could be used to create a system that enables users to create
low fidelity approximations of scenes, movement of objects, and
camera movement as input modalities to generate a stylized high
fidelity output from a video diffusion model. As described in Sora’s
technical report [10], video diffusion models may have the poten-
tial to generate large scale 3D scenes and virtual worlds. These
could be also edited through methods in Dreamcrafter discussed
above or used to complete or extend 3D scenes. These methods
could leverage all capabilities of the editing and generation systems
presented in Dreamcrafter for world building systems. We envi-
sion Dreamcrafter to be a system for editing and assisting in the
creation of realistic environments and worlds for future 3D repre-
sentations. In order to approach this goal with today’s systems and
technology we create an immersive gaussian splatting editor with
multimodal generative models. Given that multiple startups like
WorldLabs, Luma AI, Open AI, Runway ML are exploring world
building systems in the form of video and generative 3D systems,
we hope that our work can inform the development of these future
systems and graphics/computer vision research for more broadly
world generation systems.

8 LIMITATIONS AND FUTUREWORK
There are a few limitations to this work that offer opportunities for
future work.

Global scene editing. Dreamcrafter supports editing and creating
individual radiance field objects within an environment. However,
users may want to edit aspects of the underlying environment as
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they design their scenes. One way we have begun to explore this
possibility is through developing functionality that allows users to
take a snapshot of an environment from a fixed perspective and
then stylize that snapshot, in a manner similar to how sculpted
objects are stylized in Dreamcrafter currently. The resulting gener-
ation suggests a possible way to stylize the scene and all objects
contained within it together. Ideally, users should be able to define
the perspectives they take snapshots from and how they stylize the
scene, perhaps even controlling which objects receive the global
style treatment.

Additional ways to control generation. A key focus of future work
should be the development of more intuitive ways to generate
radiance field objects. For instance, rather than rely solely on voice
commands, what if users could use Dreamcrafter with text or 2D/3D
sketches/images as reference input or with multimodal input like
gestures, which then get translated into or serve as generative
AI prompts? Incorporating voice commands for positioning like
“place the table next to the blue chair” would make the system more
user-friendly without having to manually place objects.

We anticipate that Dreamcrafter’s modular design will help ex-
plore new interaction techniques. Dreamcrafter has separate mod-
ules for object generation, for using AI to create new objects, and
spatial annotation, for placing objects in the scene. By separating
these concerns, Dreamcrafter has the potential to evolve with not
only new AI technologies but also new 3D representations (i.e.,
whatever may replace radiance fields for photorealistic rendering
in the future).

Even more rapid proxies. While Dreamcrafter currently supports
speech-to-text prompt labels and image previews, what might alter-
native proxies or intermediate proxies between 2D and 3D objects
look like? For example, would users find 3D wireframe outlines just
as useful as the 2D image previews? Furthermore, if users could
stylize entire scenes, what would the appropriate proxy for the
entire scene be? A sketch of the new alongside the old? Over the
course of the project’s development, recent image-to-3D models
released which can run within seconds instead of minutes, and it
could be possible to explore new proxy representations that take ad-
vantage of the faster inference while keeping the same foundation
of the overall system.

Automatic Segmentation. Dreamcrafter currently takes in input
of full 3DGS and objects, however it currently is unable to edit
objects that are fixed in the scene. To enable editing and placement
of objects baked in existing scenes, having automatic semantic seg-
mentation could be used to streamline the editing workflow, making
it more efficient for users, without requiring manual segmentation.
Users could be able to select regions of objects via segmentation or
volumes in space to perform edits.

We believe that these avenues of future work can apply to future
3D editors and generative world building systems.

9 CONCLUSION
The idea behind Dreamcrafter is to use direct manipulation for spa-
tial positioning and layout; and leverage generative AI for editing
style and appearance of photorealistic objects. Because generative
AI edits are unlikely to run in real-time, Dreamcrafter introduces

rapid proxy representations, e.g. using a 2D diffusion model to
create a stand-in image for a longer-running 3D generative task.
Dreamcrafter enables both 2D (image) and 3D output. In a first-use
study, participants report feeling more in control of AI generation
when they first sculpt objects before stylizing them with generative
AI. Participants also report finding proxy representations useful
for scene editing. We discuss how Dreamcrafter could help advise
future work in world building systems.
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