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Figure 1: Programming Approaches for Exploratory Digital Fabrication. Left) workflows are commonly constructed by painstak-

ingly importing and exporting files between discrete GUIs and scripts. Middle) computational notebooks allow more flexible

composition, but require additional synchronization between code, machine configuration, and real-world outputs. Right)

Verso provides a live programming environment (left), within-code GUIs that synchronize machine state with values in code

(middle), and generation of custom visualizations projected onto the corresponding physical locations (right).

ABSTRACT

Makers from increasingly diverse backgrounds use digital fabrica-
tion machines to explore novel design spaces. However, software
tools for fabrication are designed primarily for replication-based
tasks; programming machines for bespoke applications while ac-
counting for physical contingencies remains challenging. To bet-
ter support exploratory fabrication, we present Verso, a proof-of-
concept approach that extends concepts from computational note-
books. Verso affords graphical control via modules that result in
continuous feedback, letting makers fluidly view and iterate on
their workflows. Modules also provide controlled synchronization
between code and external digital and physical processes while
preserving a clear flow of data. Toolpath stylesheets (TSS) translate
machine instructions into task-specific visualizations that can be
projected into the machine’s physical work space. To demonstrate
our approach, we synthesize three design goals and propose three
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example exploratory workflows for subtractive manufacturing, ma-
terials science, and biology.
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1 INTRODUCTION

Digital fabrication machines are machines that can be programmed
to create physical objects. Increasingly, makers from diverse back-
grounds are pushing the limits of where these machines can be
applied. Artists explore new sketching techniques with drawing
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machines called plotters [He and Adar 2020; Yasu 2017], carve molds
using computer numerical control (CNC) mills, and even create
data-driven ceramics with clay 3D printers [Wasp 2019]. Materi-
als scientists explore novel material structures through controlled
hydrogel deposition using CNC machines [Chatterjee et al. 2019;
Rivera et al. 2020; Wang et al. 2016]. Biologists pioneer automated
high-throughput experimentation using robotic pipetting and imag-
ing tools [Ouyang et al. 2021]. All these scenarios require processing
data from heterogeneous sources, fine-grained control and cus-
tomization of machine movements, and a way to test and improve
workflows.

Prior digital fabrication practice and research generally focuses
on replication-based workflows, whose goal is to faithfully repli-
cate a digital model [Baudisch and Mueller 2017]. However, recent
findings show that makers in emerging domains build bespoke,
application-specific workflows, often from the ground-up [Twigg-
Smith et al. 2021]. They prioritize self-guided exploration over
replication. Exploration gives rise to iteration, which requires in-
creased control over machine motion and input data sources. These
makers are already programming novel workflows, but often do not
have programming tools suited for their applications.

For example, an artist milling a mold might want to add features,
butmust quickly preview any additionalmachinemovements in situ
with the existing cuts in the chosen material. A materials scientist
may want to author machine movements at the instruction level
to control deposition of novel materials with untested physical
properties. A plant biologist may need to integrate camera data to
help a robot locate and move samples. These scenarios contrast
sharply with the present prevailing goal in digital fabrication, i.e.,
minimizing error and replicating idealized outputs. Instead, they
highlight the need for makers to explore cutting-edge design spaces,
including the challenges of working with the material (e.g., wood,
hydrogel, plant matter).

We term this paradigm exploratory digital fabrication (EDF),
which champions programmability, inspectability, and iteration
with the end result that the practitioner arrives at a more holis-
tic understanding of the design space of the fabrication task. EDF
workflows commonly involve different challenges than those found
in replication-based fabrication, including instruction-level manip-
ulation, managing and processing sensor data, and adapting to
physical landmarks.

1.1 Why is Exploratory Fabrication Difficult?

Currently, makers create and manage workflows through two main
approaches:

(1) Most commonly, manual export and import of intermedi-
ate files between GUI-based applications for manipulating
data (e.g., Cura or machine-specific software suites).

(2) More rarely, centralizing code in computational notebooks

(e.g., Jupyter notebooks).
Manual export and import works well for replication-basedwork-

flows, but poses major issues for EDF. Namely, it is difficult to test
and iterate upon workflows as makers explore the design space.
Makers changing one part of the workflow—for example, editing a
model’s geometry in a CAD program—must manually import and
export back down the entire chain of software tools to propagate

the change. Makers cannot quickly and in real time visualize the
result of changes in their workflow before committing to them.
They must go through a series of time-consuming steps after each
iteration. Similarly, managing workflows across separate programs
can lead to inconsistent state. Makers updating and exporting new
files must remember to manually import the new file and re-export
the remaining intermediate files, which may require re-running and
even re-writing postprocessing scripts. The length and complexity
of workflows create additional effort a maker must exert to ensure
consistency.

On the other hand, computational notebooks let makers coor-
dinate several tasks, for example, connecting to, calibrating, and
running the machine, all within a single programming environ-
ment. This allows for increased coordination between different
steps of a workflow. However, notebooks are designed primarily for
digital-only data tasks and pose challenges for working with phys-
ical data. Working with fabrication machines calls for persistent
recalibration, modifying program behavior as needed to account for
physical realities. Unlike many standalone machine-specific GUI
tools, code in computational notebooks is divorced from physical
state. In addition, many tasks with EDF are best suited for graphical
input and direct manipulation, yet such input in notebooks remains
largely out of reach. Instead, makers must both visualize machine
behavior and control machines with code alone.

1.2 How Can We Improve Programming for

EDF Workflows?

We argue for extending concepts from computational notebooks to
better accommodate EDF. We propose three design goals to build
on the foundation that notebooks provide:

(1) synchronize program state with physical realities,
(2) allow graphical input without sacrificing the flexibility of

code, and
(3) visualize different views of machine behavior physically in-

situ.

To test these goals, we built Verso, a proof-of-concept implemen-
tation in a prototypical notebook environment. Verso lets makers
edit source code as the programming environment nearly immedi-
ately reflects changes in the program’s output. Makers can program
and share modules, which are GUIs embedded inline into the work-
flow’s source code that input and output data from the rest of the
program. Verso modules can read and write data to external appli-
cations, sensors, and machines in a structured manner; modules
thus provide a layer of abstraction between data flow and commu-
nication with the physical world.

Verso also facilitates rapid previewing of workflow output via
programmable and shareable toolpath stylesheets (TSS), which trans-
late a final set of machine instructions into a visualization that is
tailored for a particular application. Verso programs, modules, and
TSS code can be shared and remixed with the maker community.
Using Fogarty [2017]’s language, Verso sketches novel functionality
(i.e., unified control over heterogeneous data sources and steps in
one live program) through a combination of existing and novel
techniques.
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To demonstrate Verso, we authored three example workflows
based on ongoing collaborations with three makers building ex-
perimental digital fabrication workflows. In each example, we con-
tribute initial ideas for workflow code, modules, and TSS that could
be helpful to makers in the given scenarios. These examples demon-
strate how Verso efficiently represents and permits iteration of
experimental workflows across a range of machines and scenarios.

To summarize, we contribute:
• A new workflows-as-live-programs paradigm for experimen-
tal digital fabrication
• Aproof-of-concept programming environment for authoring
workflows using code and embedded user-defined GUIs to
encapsulate input/output to physical machines
• An approach for making custom visualizations (TSS) to test
workflows
• Three demonstrations that illustrate how the workflows-as-
live-programs approach might help makers explore fabrica-
tion techniques more efficiently than is currently possible.

2 RELATEDWORK

Verso draws upon prior insights about how makers use fabrication
machines to explore, challenges they face when digitally controlling
physical machines, and ideas from programming environments for
other domains.

2.1 Exploratory Digital Fabrication

The notion of exploratory fabrication stems from several related
ideas in HCI research. Namely, Kim et al. introduce the concept of
fabrication middleware in their work on compositional fabrication,
where a machine behaves like an audio mixer and reflects changes
to parameters in realtime [Kim et al. 2018]. They argue that this
extends Willis et al.’s notion of interactive fabrication, where an
interactive, but fixed, correspondence exists regarding how a ma-
chine reacts to maker input [Willis et al. 2011]. We aim to realize
this vision of composition at a robust level with visualizable live
programming that supports feedback from the physical world.

Such exploration during digital fabrication can foster important
discoveries. By employing a bottom-up approach—where makers
first specify a single hair without a CAD model for their final
outcome—makers using Cilllia can create hair arrays on flat and
curved surfaces [Ou et al. 2016]. Defextiles leverage under-extrusion
of plastic filament (“defects”) on unmodified machines to create
textile patterns useful for rapidly prototyping fashion designs, for
example [Forman et al. 2020]. To develop Cilllia, Defextiles, and
similar approaches, makers must explore the trade-offs between
print speed and the extrusion multiplier, which is similar to the
materials scientist’s exploration of gel deposition. Verso aims to
help makers, including researchers and hobbyists alike, more easily
assess machine capabilities and materials and, ultimately, develop
novel fabrication techniques and applications.

Exploration is also common among hobbyists, such as makers on
Twitter’s #PlotterTwitter community who experiment with plotting
techniques and materials [Twigg-Smith et al. 2021]. Additionally,
Li et al. [Li et al. 2020] find that artists using fabrication machines
(1) write custom software to circumvent forms of automation that
does not let them intervene, (2) seek multiple levels of abstraction

Figure 2: Plotter workflow demonstrates Verso’s interface.

Makers load an existing workflow from the dropdown menu

at at the top or create a new workflow. This workflow shows

the plotting of a torus with an Axidraw machine. While writ-

ing code in the editor, makers can add calls to module func-

tions that generate associated embedded GUIs. By default,

these GUIs are visible, but makers can minimize them to

enhance their ability to skim workflow code.
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in their software tools to have more fine-grained control over aes-
thetics, and (3) experience workflow breakdowns when moving
between multiple tools non-linearly. Based on these insights, Li
et al. advocate for software that facilitates “rapid digital-physical
transitions.” Verso addresses this need. It lets makers preview and
manipulate aspects of a fabrication workflow in one unified envi-
ronment, write code at different levels of abstraction, and make
non-linear revisions, and iterate with minimal cost in time and
materials.

2.2 Challenges with Exploratory Fabrication

A key challenge for professionals [Yildirim et al. 2020], hobby-
ists [Li et al. 2020; Twigg-Smith et al. 2021], and students [Hudson
et al. 2016] who use digital fabrication machines is connecting dig-
ital tools to their physical counterparts. For instance, Yildrim et
al. [Yildirim et al. 2020] identify that among the current challenges
manufacturing professionals face is how the “perfection of software
would break down in the translation to real materials and tools,”
requiring makers to take copious notes of failures, source materials
differently, and seek previews of their fabrication intents before
committing them to production.

Researchers have introduced techniques to address this chal-
lenge. Sensicut detects and alerts makers to material properties that
impact laser cutting and enables them to apply their knowledge of
material cutting via a GUI [Dogan et al. 2021]. As an example of this
seamless integration of software controls and physical feedback,
Tian et al. created a GUI to associate maker software interactions
with a physical lathe; it provides controls for specifying physical
constraints and enables the looping of repetitive actions. In addition,
haptic feedback helps makers become aware of the machine’s state,
also bridging the gulf of evaluation. Gulay and Lucero [Gulay and
Lucero 2019] introduce “integrated workflows,” which are similar
to Tian et al.’s vision of “lucid” fabrication workflows that blend the
digital and physical [Tian et al. 2019]. Fossdal et al. extend CAD en-
vironments to encourage toolpath andmaterial exploration [Fossdal
et al. 2021]. Focusing on machine operations rather than workflows,
Taxon provides a way to represent any fabrication machine and
reason about valid operations for it [Tran O’Leary et al. 2021]. Addi-
tionally, prior work has investigated the role of augmented reality
in digital fabrication, for example, copyCAD [Follmer et al. 2010],
SPATA [Weichel et al. 2015a], ReForm [Weichel et al. 2015b], MixFab
[Weichel et al. 2014], AdapTutAR [Huang et al. 2021], and Maha-
patra et al.’s investigation into barriers to augmented fabrication
[Mahapatra et al. 2019].

While prior work has focused on supporting specific fabrication
interactions and techniques, Verso raises the level of abstraction
from a specific machine and workflow to workflows more generally.
In this way, Verso complements existing research on ways to more
smoothly support transitions between digital and physical control
in digital fabrication.

2.3 Programming Exploratory Workflows

We discuss existing techniques beyond manual import and export
for programming exploratory workflows. We draw inspiration from
graphical tools for programming, as well as improvements to com-
putational notebooks for data science tasks. Verso seeks to combine

benefits from each approach to provide a computational environ-
ment with increased physical-digital synchronization.

2.3.1 Graphical Programming Tools. Live programming envisions
a programming environment that provides coders with continuous
feedback as they author a program [Tanimoto 1990]. Program-
ming environments that support liveness can tighten the feedback
loop between code and its effects, enabling faster iteration and
debugging. Peek and Gershenfeld presented Mods, a live, graphical
interface for composing common-case digital fabrication work-
flows [Peek and Gershenfeld 2018]. Verso extends Mods’ concept
by embedding graphical interfaces within a larger code-based pro-
gramming environment and by letting makers customize visual-
izations.Omar et al. introduced liveness in programs through user-
defined GUIs called livelits [Omar et al. 2021]. End-users invoke a
livelit they previously defined by calling the function in a program,
which introduces a GUI in-line. Similarly, Verso provides modules
which allow for live graphical input for code, but which mediate
input to and output from physical machines.

Moreover, program visualizations that describe a program’s state
increase code understanding and debugging [Hoffswell et al. 2018].
Prior work has investigated application debugging through targeted
inspection [Burg et al. 2013] and always-on visualizations [Kang
and Guo 2017; Lieber et al. 2014]; many of these contributions
influenced the design of state-of-the-art web developer tools. Verso
extends such visualization and interactive debugging techniques to
digital-physical workflows.

Purely graphical systems for live programmingwith sensor input,
e.g., Pure Data [Puckette 2022] and LabView [Bitter et al. 2006], let
programmers build interactions around sound and instrumented
testing respectively within a flow-based programming graphical
editor. However, their graphical-only nature precludes building
more complex workflows outside of their target applications. Verso
seeks to integrate the benefits of graphical control and live sensor
control within a textual programming environment.

2.3.2 Computational Notebooks for Data Science. Computational
notebooks, like Jupyter Notebook [Kluyver et al. 2016], Databricks
[Lakehouse 2022], and Google Colab [Bisong 2019], let program-
mers interleave code, data, and visualizations as cells within a single
programming environment. They are intended for tasks that involve
purely digital data manipulation, as opposed to the physical-digital
data processing required in exploratory digital fabrication. Nonethe-
less, many computational notebook implementations present sig-
nificant pain points to data scientists, for example, loading data
from multiple (digital) sources and re-running code after tweaking
parameters [Chattopadhyay et al. 2020]. Coordinating code with
physical machines and materials exacerbates this issues; naively
sending and receiving data from the physical world can lead to
inconsistent program state and unsafe machine execution.

One particular notebook that addresses some of these issues is
Observable [Bostock 2018] which treats notebook cells as a graph
and re-computes any child cells when a cell is modified. It also
supports rudimentary graphical inputs that modify the value of a
cell in real time [Bostock 2022].

Building on this idea, the mage [Kery et al. 2020] system supports
graphical input in computational notebooks by directly manipulat-
ing visualizations and synthesizing resulting code changes. Like
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mage, B2 [Wu et al. 2020] supports tighter integration of code and
interactive data visualizations in Jupyter notebooks. A key insight
in B2 is that manipulations to data frames are queries that can be
used to generate visualizations, just as interactions with visualiza-
tions are also query operations that can update and impact analysis
code. Sketch-and-sketch also supports bidirectional authoring of
vector graphics (SVGs) via code and direct manipulation [Hempel
et al. 2019]. Glinda combines live programming with multimodal
program authoring in a domain-specific language for data science
workflows [DeLine 2021]. Symphony provides interactive compo-
nents for machine learning tasks, such as confusion matrix and and
3D path visualizations, that can be included in notebooks alongside
reports and dashboards simultaneously [Bäuerle et al. 2022]. Verso
combines live programming with graphical input through modules
and applies these techniques to a new domain, digital fabrication.
Our goal with Verso is to apply these techniques to previewing,
writing to, and reading data from the physical world.

Finally, p5.fab provides low-level 3D printer control from a
Javascript environment, letting users experiment with material
properties using unconventional printing processes [Subbaraman
and Peek 2022]. Verso’s aims to build on the programmatic control
exemplified in p5.fab by providing abstractions around machine
calibration, control, and phyical previewing of execution.

3 VERSO SYSTEM OVERVIEW

We implemented Verso as a prototype computational notebook
environment using Typescript and React.js with a backend written
using Node.js. The application consists primarily of an in-browser
editor where makers write workflow code in Javascript, a language
accessible to many makers. As the maker types, Verso listens for
input events and continuously re-evaluates the maker’s code. Verso
provides a library of classes for representing common concepts in
digital fabrication such as Machine and Geometry.

In addition to raw code, makers can use modules by writing a
module function. A module function is a function that begins with
the $ symbol, such as $geometryGallery. As soon as the maker
types in a module function, Verso generates the module’s GUI imme-
diately below the program line containing the module function. The
maker can now use the module’s GUI to make graphical changes,
which can affect the return value of the module function. As de-
scribed further in Section 4, modules are I/O monads that handle
any input-output in a separate evaluation context from the main
workflow program. As a result, modules can communicate with
the backend to perform tasks such as selecting a geometry file,
sending data over a serial connection to a machine, or guiding the
user through calibrating a projection. Deleting the module function
causes the module’s associated GUI to disappear.

Using raw code andmodules, the maker eventually generates ma-
chine instructions, the low level commands that control a machine.
To develop an understanding of what the machine would do if it ran
a set of instructions, including any potential issues that would occur,
makers use TSS to translate a set of instructions into a visualization.
Each TSS is designed for a specific fabrication scenario, and each
provides a different “view” of a set of instructions. Makers use the
toolpathVisualizer module to select which TSS they would like
to use for the set of instructions currently passed into the module

Figure 3: Calibrating visualizations for a physical machine.

2D projections of a visualization do not initially match the

machine’s coordinate space. Using the TabletopCalibra-

tor module (not pictured), the plotter draws a ground truth

bounding box (upper left). The maker uses the mouse to in-

teractively draw the projected bounding box to match the

physical one (upper right). Now that the bounding boxes

match (lower left), TabletopCalibrator computes a ho-

mography to correctly map the projection to the machine

coordinate space so visualizations precisely match where the

plotter moves (lower right).

function. We currently implement the visualizations generated by
TSS in Three.js [Cabello 2014]. Altogether, changes to the workflow
code and to modules results in near-immediate visual feedback via
TSS. TSS are further described in Section 5.

For our current implementation, we chose to prototype Verso’s
features as a standalone computational notebook environment. This
allowed us to more freely build and test ideas without worrying
about how well they would integrate with an existing notebook
system. In the future, we will implement Verso’s features in popu-
lar computational notebook systems such as Observable [Bostock
2018].

4 MODULES: EMBEDDED GUIS THAT

ENCAPSULATE PHYSICAL CONTROL

Representing digital fabrication workflows as live programs affords
advantages but introduces additional issues. First, many tasks in dig-
ital fabrication are graphical by nature. For example, selecting and
processing geometries, tuning machine parameters, and previewing
toolpaths require graphical interfaces for smooth experimentation.
Second, makers must constantly communicate with the external
digital and physical processes, for example, writing instructions to
the physical machine over a serial connection.

In many programming languages, to perform tasks like I/O, pro-
grammers write impure functions, which are functions that cause
side effects. Such a side effect might include logging data to the
console, or, in Verso’s case, causing a machine to move. Verso’s live
environment means that functions might be called many times per
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second. In this case, impure functions would cause many unnec-
essary and potentially unsafe side effects like repeated machine
movements. Furthermore, as noted previously, our design aims to
maintain a clean boundary between the flow of data in the program
and code dedicated to I/O.

To solve both issues, Verso instead represents an I/O step of the
workflow as a pure function that defers the effectful code, which
may cause side effects, away from the main workflow’s evaluation
context. Module functions are pure functions that generate an as-
sociated GUI. While module functions may be called repeatedly
by the live editor, effectful code is called within the module’s own
evaluation context which is separate from the main workflow.

Modules afford graphical control in a programmatic context
while also providing a layer of encapsulation around effectful code.
Modules’ functions optionally accept arguments and return values.
Each module’s associated GUI is rendered inline with code. When
makers interact with the module’s GUI (e.g., scrubbing a slider), the
output of the module function’s output changes accordingly. For
example, the dispatcher module lets makers stage toolpaths to
send to the physical machine which are only sent once the maker
clicks the “dispatch” button in the module’s GUI. To do this, the
$dispatcher module function accepts an array of toolpaths and
returns an empty value. At the same time, each toolpath passed to
the module function as an argument appears in the module’s GUI.
Once the maker clicks the “dispatch” button, only then does effect-
ful code execute, and it executes within the module’s evaluation
context and not within the live workflow program. Modules reflect
monadic I/O patterns from functional programming [Paul Hudak
et al. 1998; Wadler 1992] and build off of Omar et al. [2021]’s livelits
(see discussion in subsection 2.3).

4.1 Example Modules

Verso currently supports several modules that bridge code and the
physical world. To show this, we briefly elaborate on three modules
for accomplishing tasks from the usage scenario’s plotter example.

A module that calibrates a projected visualization for a machine’s
physical space. A Verso Tabletop object represents a virtual ma-
chine work space along with a homography which maps the virtual
space to its true physical location. To calculate the homography,
makers must map four virtual points to four physical points and
then solve for a 3𝑥3 matrix representing the transformation. To do
this, tabletopCalibrator projects a box representing a 2D projec-
tion of the machine’s work envelope, that is, the total space in which
the machine’s tool can move. The module then prompts makers
to use a mouse to drag the box’s corners to match the physical
ground truth work envelope—e.g., the boundaries of the machine’s
bed or a maximal box drawn by machines without a bed. Once this
routine is complete, the module calculates the homography. The as-
sociated $tabletopCalibrator function in the workflow returns
Tabletop objects with this homography such that any toolpaths
and visualizations generated using the Tabletop will use correct
physical coordinates.

A module that leverages existing machine toolpathing software.
Verso can interface with current software tools because modules
provide a thin abstraction around external processes. For example,

the axidrawDriver module’s associated function takes as input
a vector geometry and outputs a toolpath of EBB commands that
are understood by the Axidraw plotter. axidrawDriver communi-
cates with the open-source Axidraw driver [Mark Oskay 2022] to
compute the toolpath. Our current implementation implements a
backend function that forks a process that runs the Axidraw driver.
When running this process on the the backend server, the module
submits an HTTP request to pass the geometry data to the server,
which in turn passes it to the process and returns the resulting
toolpath as an HTTP response. In this case, we reverse engineered
a placeholder to intercept instructions that the driver output. In
general, the effort needed to implement a wrapper module depends
on the availability of APIs from existing software tools.

A module that connects to and initializes a physical machine.
Many machines require initialization procedures before each use,
including homing the machine’s axes to establish absolute bounds
and zeroing the machine by having the end-user maker set a physi-
cal point to represent the origin. Verso’s machineInitializer mod-
ule handles these tasks; it is parameterized over the type of machine
passed in as input to the $machineInitializer function. For exam-
ple, for the Jubilee CNC machine [Vasquez et al. 2020], the module
exposes subroutines for connecting to the machine over a serial
port and sends G-Code to the machine to home its axes in the
required order. Makers execute these subroutines using graphical
input and can debug and edit module subroutines as needed. The
$machineInitializer function returns a Machine object marked
as {initialized: true} if and only if the module has received
input from the physical machine that it was homed and zeroed
correctly.

4.2 Implementing custom modules

Makers can add new modules or extend existing ones as additional
applications arise. To create a module, they must provide a new
class that extends the Module superclass in Verso, maintains its
own state, and provides definitions for the following:

• expand(): a method that synthesizes the module function
to be run in the workflow code. For example, the expand
method for tabletopCalibrator returns a string represen-
tation of a function named $tabletopCalibrator which
will be inserted into the workflow immediately before run-
time. The function takes a Tabletop object as a parameter
and returns an adjusted Tabletop object as a result of the
manual calibration, as shown in Figure 3.
• render(): a method that returns HTML for the module’s
GUI, including any text, buttons, and visualizations shown in
the GUI. This method shadows React.Component’s render
method and is called whenever the module’s state is updated.
• handleInput() (multiple): methods that handlemaker input
(e.g., slider scrub, button press). These methods can modify
the module’s state, which causes the module to re-render.
They can also call action methods to perform I/O.
• action() (multiple): methods for performing I/O. For exam-
ple, dispatcher accesses the serial port associated with the
machine and writes data over it. These methods can interface
with a server over HTTP, as well. They also perform any
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Require: 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑜𝑖𝑛𝑡𝑠 ← [ ]
for 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 in 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 do

𝑜𝑝𝑐𝑜𝑑𝑒 ← 𝑝𝑎𝑟𝑠𝑒𝑂𝑝𝑐𝑜𝑑𝑒 (𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
if 𝑜𝑝𝑐𝑜𝑑𝑒 = “G0” or 𝑜𝑝𝑐𝑜𝑑𝑒 = “G1” then
𝑋,𝑌, 𝑍, 𝐹, 𝐸 ← 𝑝𝑎𝑟𝑠𝑒𝐴𝑟𝑔𝑠 (𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
𝑝𝑢𝑠ℎ(𝑝𝑜𝑖𝑛𝑡𝑠,𝑉𝑒𝑐𝑡𝑜𝑟3(𝑋,𝑌, 𝑍 ))

end if

end for

𝑐𝑢𝑟𝑣𝑒 ← 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝑝𝑜𝑖𝑛𝑡𝑠)

𝑐𝑜𝑙𝑜𝑟𝑠 ← [ ]
𝑓 ← ... {Choose a constant frequency for cycling colors.}
𝜙𝑟 , 𝜙𝑔, 𝜙𝑏 ← ... {Choose a constant phase offset per channel.}
for (_, 𝑖𝑛𝑑𝑒𝑥) in 𝑐𝑢𝑟𝑣𝑒 do
𝑟𝑒𝑑 ← 𝑠𝑖𝑛(𝑓 × 𝑖𝑛𝑑𝑒𝑥 + 𝜙𝑟 )
𝑔𝑟𝑒𝑒𝑛 ← 𝑠𝑖𝑛(𝑓 × 𝑖𝑛𝑑𝑒𝑥 + 𝜙𝑔)
𝑏𝑙𝑢𝑒 ← 𝑠𝑖𝑛(𝑓 × 𝑖𝑛𝑑𝑒𝑥 + 𝜙𝑏 )
𝑝𝑢𝑠ℎ(𝑐𝑜𝑙𝑜𝑟𝑠,𝐶𝑜𝑙𝑜𝑟 (𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛))

end for

𝑚𝑒𝑠ℎ𝑒𝑠 ← [ ]
for (𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑖𝑛𝑑𝑒𝑥) in 𝑐𝑢𝑟𝑣𝑒𝑠 do
𝑐𝑜𝑙𝑜𝑟 ← 𝑐𝑜𝑙𝑜𝑟𝑠 [𝑖𝑛𝑑𝑒𝑥]
𝑚𝑒𝑠ℎ ← 𝑀𝑒𝑠ℎ(𝑐𝑢𝑟𝑣𝑒, 𝑐𝑜𝑙𝑜𝑟 )
𝑝𝑢𝑠ℎ(𝑚𝑒𝑠ℎ𝑒𝑠,𝑚𝑒𝑠ℎ)

end for

return 𝑚𝑒𝑠ℎ𝑒𝑠

Figure 4: Ordering TSS (G-Code Instruction Set)

needed calculations, such as computing the homography to
localize visualizations to visual space.

5 TASK-RELEVANT VIEWS THROUGH

TOOLPATH STYLESHEETS (TSS)

When building and iterating on workflows, makers must un-
derstand what the machine will do when it executes a toolpath.
Whereas software engineers can test their programs by repeatedly
running unit tests, digital fabrication programs are time-consuming
and wasteful to execute repeatedly. Instead, makers often rely on
visualizations to identify potential issues, such as whether the tool-
path is placed in the wrong location, before executing the toolpath
on the physical machine. Further, visualizations are vital ways to
understand how data and materials fit together in a workflow.

Existing GUI tools typically include visualizations of digital
model geometries modified for the manufacturing technique, e.g.,
3D printing or milling. However, visualizations provided by state-
of-the-art tools are typically not customizable and visualize only
geometry, which obscures potentially crucial low-level information
available only at the instruction level.

To empower makers to generate bespoke visualizations, Verso
uses toolpath stylesheets (TSS), which translate instructions into
visual primitives. Figure 1 shows an example TSS in the upper right
for visualizing toolpath order, corresponding to the pseudocode

Figure 5: Toolpath Stylesheets (TSS) can highlight salient

details of toolpaths. Top: the geometry of a toolpath of two

circles is shown on the left. The expected energy from laser

cutting is shown on the right. This TSS highlights that the

rightmost circle contains duplicate paths; excess heat applied

could ignite thematerial. Bottom: sharp corners in a toolpath

could pose problems in gel extrusion. The TSS on the bottom

right highlights any sharp corners below a threshold angle

set by the maker.

of Figure 4. Formally, a TSS is an interpreter that interprets each
toolpath instruction according to user-defined semantics. For ex-
ample, consider the G-Code instruction G1 X50 Y32 Z503 F1500.
Assuming that absolute (and not relative) coordinates are enabled
on the machine, this instruction would cause the machine tool to
move from its current position to the coordinate (50, 32, 503) mm
at a maximum speed of 1500mm/s. A TSS for producing a visual-
ization might render a line from the current position to the new
position. Further, a TSS for debugging speeds might color the ren-
dered line according to the instruction’s speed, with darker lines
corresponding to faster movements. Visualizing speed allows the
maker to quickly detect potentially risky high speed motion. This
speed TSS provides functionality currently omitted from existing
toolpath visualizers. As another example, consider a common issue
with using laser cutters: overlapping geometries can produce a tool-
path with many laser movements in a small area, which can lead to
material ignition. Unfortunately, such issues can be invisible in the
geometry; overlapping paths can easily be missed. A TSS would
facilitate catching such events by parsing all movement-related
instructions into points and binning the points into a 2D histogram
to obtain a rough map of the expected energy output (a heat map) of
the toolpath. The resultant heat map would immediately highlight
potentially problematic areas of the toolpath, which makers can
then debug in their workflow. This heat map TSS is detailed in
Figure 5 top and Figure 6.

More formally, a TSS interprets machine instructions with alter-
native visual semantics instead of physical machine action. Rather
than attempting to simulate a physical process exactly, it offers a
way to programmatically capture important—and possibly other-
wise hard to detect—criteria of planned machine actions. Which
criteria to include is chosen by the maker, enabling application-
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Require: 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑐𝑢𝑟𝑣𝑒 ← ... {Build a curve as done in the previous TSS.}
𝑟𝑎𝑡𝑒 ← 100 {E.g., 100 to sample a point every 100ms.}
𝑝𝑜𝑖𝑛𝑡𝑠 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐶𝑢𝑟𝑣𝑒 (𝑐𝑢𝑟𝑣𝑒, 𝑟𝑎𝑡𝑒)

𝑏𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡, 𝑏𝑖𝑛𝑊 𝑖𝑑𝑡ℎ ← ...{Choose bin sizes for the histogram.}
𝑔𝑟𝑖𝑑 ← [ ][ ]
𝑠𝑒𝑡𝑍𝑒𝑟𝑜𝐴𝑙𝑙 (𝑔𝑟𝑖𝑑)
for 𝑝𝑜𝑖𝑛𝑡 in 𝑝𝑜𝑖𝑛𝑡𝑠 do

𝑟𝑜𝑤 ← 𝑝𝑡 .𝑦

𝑏𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡

𝑐𝑜𝑙 ← 𝑝𝑡 .𝑥

𝑏𝑖𝑛𝑊 𝑖𝑑𝑡ℎ
𝑔𝑟𝑖𝑑 [𝑟𝑜𝑤] [𝑐𝑜𝑙] ← 𝑔𝑟𝑖𝑑 [𝑟𝑜𝑤] [𝑐𝑜𝑙] + 1

end for

𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡 ←𝑚𝑎𝑥 (𝑔𝑟𝑖𝑑)
𝑚𝑒𝑠ℎ𝑒𝑠 ← [ ]
for (𝑟𝑜𝑤, 𝑐𝑜𝑙) in 𝑔𝑟𝑖𝑑 do

𝑐𝑜𝑢𝑛𝑡 ← 𝑔𝑟𝑖𝑑 [𝑟𝑜𝑤] [𝑐𝑜𝑙]
𝑜𝑝𝑎𝑐𝑖𝑡𝑦 ← ( 𝑐𝑜𝑢𝑛𝑡

𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡
)3 {Exponent darkens low counts.}

𝑏𝑜𝑥 ← 𝑏𝑜𝑥𝐴𝑡 (𝑟𝑜𝑤 × 𝑏𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑙 × 𝑏𝑖𝑛𝑊 𝑖𝑑𝑡ℎ)
𝑚𝑒𝑠ℎ ← 𝑀𝑒𝑠ℎ(𝑏𝑜𝑥, 𝑜𝑝𝑎𝑐𝑖𝑡𝑦)
𝑝𝑢𝑠ℎ(𝑚𝑒𝑠ℎ𝑒𝑠,𝑚𝑒𝑠ℎ)

end for

return 𝑚𝑒𝑠ℎ𝑒𝑠

Figure 6: Heat Map TSS

and task-specific visualizations. Similar to how CSS enables dif-
ferent views of underlying HTML, TSS enables multiple views of
instructions for visual debugging in different scenarios.

Implementing a custom TSS. To implement a new TSS, makers
write a pure function that accepts an instruction as an argument,
matches the instruction by its opcode (e.g., G0 for linear movement),
parses the instruction’s operands (e.g., X50 Y32 Z503 F1500) and
returns a visual primitive, such as a line, arrow, or square.

We used the THREE.js library [Cabello 2014] to produce 3D
visual primitives. Additional libraries (such as d3.js [Bostock et al.
2011]) are also compatible. Figure 4 and Figure 6 show pseudocode
for implementing the ordering TSS (Figure 1, upper right) and the
heat map TSS (Figure 5 top), respectively. As with modules and
workflows, TSS can be shared with the community so makers need
to write new ones only if they need functionality that existing ones
lack.

6 EVALUATING VERSO PROGRAMMING FOR

BESPOKEWORKFLOWS

We designed Verso to support experimental digital fabrication.
Our evaluation assesses Verso’s ability to enable explorations that
would be difficult to conduct using existing workflow paradigms.
Towards this goal, demonstrations of Verso’s abilities are an appro-
priate evaluation method in toolkit research [Ledo et al. 2018].

We recruited three makers from our professional contacts who
explore unconventional fabrication workflows: an artist who cre-
ates molds for sculptures using CNC milling and laser cutting, a

Figure 7: Exploring fabrication behaviors of novel materi-

als using Verso. Shown here, a custom module for exploring

salient parameters of extruding compressible hydrogel. Left:

The hydrogel extruded in a rectilinear pattern. Right: A mod-

ule with sliders for adjusting the amount of compressive

force and speed of travel. The speed of travel and extrusion

force are interdependent parameters; a tool for rapid iter-

ation in this parameter space is valuable for the maker’s

exploration.

materials scientist who 3D prints structures using a novel hydrogel
material, and a plant biologist who automates experiments with
millimeter-scale plants. Over several sessions, we observed how
each maker constructed their workflows, paying particular atten-
tion to parts of the workflow that were difficult to coordinate with
existing tools. For each situation, we created a proof-of-concept
workflow in Verso that demonstrates how live programming, mod-
ules, and TSS address pain points that each maker described.

6.1 Extending Toolpath Localization to

Subtractive Manufacturing

Use case. The artist was learning to use subtractive manufacturing
tools to create molds for sculptures. These tools cut away material
to create a desired form. Here, the artist primarily used a Shopbot
large-format CNCmill, a Roland toolchanging CNCmill, and a laser
cutter. Although GUIs for CNC mills exist, they require extensive
knowledge of milling jargon and parameters, and the generated
toolpaths can be difficult to understand and modify. Moreover, sub-
tractive manufacturing machines pose unique challenges. First,
because parts are carved out of stock material, there is a much
higher potential for waste. Second, if toolpaths are programmed im-
properly, the rapidly spinning end mills can break, throw material,
crash into the machine body, and catch material on fire.

Demonstration. Using Verso, we first addressed the artist’s pri-
mary concern: knowing where the tool will move in physical space,
not just in an on-screen simulation, before running the machine
and consuming material. We again used the tabletopCalibrator
and projector modules to project visualizations into the machine’s
physical work envelope. As with with the plotter, the tabletop-
Calibrator prompts the user to drag the corners of the projected
work envelope to match the physical ground-truth work envelope.
It then uses the empirical positions to calculate the same homog-
raphy to accurately map the visualizations to the true locations
in physical space. Unlike use of the plotter, the maker need only
drag projected corners to match the machine’s bed size without
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Figure 8: Machine-collected data inform biology workflows.

Only healthy green duckweed plants should be transferred

from the Petri dish to the well plate (left image). The plant

biologist can select the healthy plants that should be trans-

ferred from an image of the workspace using the custom

PointPicker module (red “x” to the yellow “x” in right image).

Verso facilitates gathering data from the physical world that

can be processed by subsequent modules.

first drawing landmarks. For Shopbot, which has a relatively large
bed, projector lets makers select a smaller subset of the visualiza-
tion to show. For the Roland mill, which has a moving bed, Verso
currently supports visualization only when the bed is stationary
before runtime; it could be extended to track bed movement using
computer vision and fiducial markers and to update the projected
visualization accordingly.

Furthermore, we proposed two new TSS that could help the
artist visually recognize and debug issues unique to laser cutters
and CNC mills. First, we proposed a TSS for creating a heat map
of cuts resulting from the laser cutter (Figure 5). If a toolpath for a
laser cutter cuts only a small region for an extended period, it risks
warping, scorching, or even igniting the material there, depending
on the type of material and the toolpath’s power and speed settings.
To generate this visualization, the heat map TSS internally plots
all points visited by the laser in 2D space, bins them by proximity,
space, and time, and generates a rough density visualization that
calls attention to parts of the toolpath that have high energy density.
This view lets the artist do a quick sanity check to determine if and
where there might be a problem in the toolpath. Verso can then be
used to edit the toolpath’s instructions directly—for example, re-
ducing laser power or increasing speed at dense areas, or removing
extraneous paths. Second, we proposed a visualization that colors
toolpaths by the order in which the instructions are executed, giv-
ing makers a quick view of when each part of the toolpath will
be cut (Figure 1, upper right). In both cases, the artist can glean
important information at the instruction level, which offers more
information than just analyzing toolpath geometry alone, as is done
in most standalone GUI tools.

6.2 Characterizing Hydrogel Deposition

Behavior with Instruction-Level

Programming

Use case. The material scientist was exploring the possibilities of
3D printing Pluronic F-127 thermosensitive hydrogel [National

Center for Biotechnology Information 2022]. Pluronic gel, a new
material, is solid at room temperature but liquid when cooled; re-
search in materials science and engineering has investigated this
property for use in drug delivery [Shriky et al. 2020], transdermal
therapy [Chatterjee et al. 2019], and experimental methods in bi-
ology [Lesanpezeshki et al. 2019]. The ability to fabricate precise
gel structures via digital fabrication could yield important future
applications of Pluronic gel.

However, digitally fabricating structures is difficult because the
gel is highly viscous and compressible. Extrusion requires fine
control (see Figure 7). Additionally, unlike 3D printing with a plastic
filament, the materials scientist must apply force on the gel in the
syringe before it emerges from the needle, and vary the force applied
depending on the velocity of the tool head, which itself varies with
any sharp turns in the toolpath. The height of the needle off the
printing bed also impacts whether and how the gel coils as it is
extruded due to internal stresses in the extrusion stream. Thus,
exploration is key to helping the materials scientist eventually
print the desired structure.

Demonstration. To help the materials scientist explore, we au-
thored a Verso program. First, the machineInitializer homed and
zeroed a Jubilee machine [Vasquez et al. 2020]. The machineIni-
tializer guides makers through sending G-code to the machine,
and the module function does not return a Machine object that is
marked as { initialized: true } until the steps are completed.
To enforce initialization prior to runtime, uninitialized Machine
objects cannot be used by any modules to send instructions to the
physical machine. Next, by calling instructionBuilder, the pro-
gram invoked a GUI to interactively create G-code instructions with
varying extrusion and feed rates. Unsurprisingly, while performing
some test prints with dispatcher, we found that the material stalled
and then “blobbed” when emerging from the needle if force was
applied too suddenly. To address this, we added several instructions
of gradually increasing extrusion rates to create a “slow start” for
extrusion. The program also significantly reduced the velocity of
instruction that moves the tool around corners.

To generalize these findings, we added a function that took a start
and end point as inputs and output an array of instructions that
implemented the “slow start” property. We added another function
for handling velocities around curves. For both functions, output
instructions varied the bed height by adjusting the z-coordinates
of the instructions to control coiling during deposition. In contrast,
most conventional slicers impose deposition layers of a fixed per-
layer height.

Finally, to make this material knowledge available in the future,
we created a new TSS that outputs a visualization specific to the
Pluronic gel. The interpreter parses G-code and outputs gaps and
blobs, highlighted in red, wherever the extrusion rates in the in-
struction increase too quickly. It also renders both the toolpath,
whose z-coordinates may vary and a naïve prediction of the de-
posited gel that may be stretched or coiled. This TSS highlights
findings from empirical tests and visually previews the gel’s mate-
rial properties. These functions and the new TSS offer first steps
for programatically capturing material properties, which can then
be readily refined for future iterations by adding them to the live
program in Verso.



SCF ’22, October 26–28, 2022, Seattle, WA, USA Tran O’Leary et al.

6.3 Integrating Camera Data for Handling

Biological Samples

Use case. The plant biologist cultivates duckweed (Lemna minor)
for large-scale, robotically automated hypothesis testing of phe-
notype data. Duckweed, an aquatic plant approximately 5mm in
width, consists of tiny floating fronds. The biologist cultivates the
duckweed en masse in a Petri dish and was attempting to transfer
individual plants to a well plate (Figure 8). The key challenge is that
the location of the duckweed plants in the Petri dish is unknown.
Thus, off-the-shelf pipetting or pick-and-place software tools do
not work well for this task because they typically assume fixed
positions to transfer all materials.

Demonstration. To specify this workflow in Verso, we first created
a new live program to drive a machine equipped with a camera
and syringe. The code uses the imager module, which opens a
GUI so the plant biologist can (1) connect to the camera and (2)
interactively apply a perspective transform to the camera feed so
the resulting image data can precisely capture the machine’s work
surface. imager’s function output is an image with a one-to-one
mapping of pixel coordinates to machine coordinates.

Using the pointPicker module, we clicked on a duckweed plant
location in the image and then clicked on its destination on the
well plate, which the module function returned. As a result, Verso
generated toolpath instructions to move the syringe to the selected
duckweed plant, apply slight suction with the syringe to pick up
the plant, move it to the well plate, and deposit the plant in the
desired well.

The functional nature of a Verso program helped us build on
user-defined abstractions. For example, Verso lets makers write a
function that takes an experimental protocol (i.e., a list of well plate
locations corresponding to experimental conditions), prompt mak-
ers for a list of duckweed locations, and execute a set of duckweed
movements at once.

Our demonstrations showhowVerso’s workflows-as-live-programs
paradigm, interactive modules, and TSS could enable hypothetical
workflows for experimental digital fabrication. These workflows
are based on real-world makers and applications. We achieve what
Ledo et al. [Ledo et al. 2018] describe to be the purpose of demon-
strations as evaluation methods: “the goal of a demonstration is to
use examples and scenarios to clarify how the toolkit’s capabilities
enable the claimed applications. A demonstration is an existence
proof showing that it is feasible to use and combine the toolkit’s
components into examples that exhibit the toolkit’s purpose and
design principles.”

7 LIMITATIONS AND FUTUREWORK

Verso provides a live programming environment for authoring dig-
ital fabrication workflows. To support liveness, it reruns the entire
program every time a maker updates a program or a module’s val-
ues. However, modules that communicate with external processes
may experience high latency, disrupting the user experience of
immediate, continuous feedback. To improve latency, we could rep-
resent incomplete data as program holes that we propagate rather
than block and wait for, as presented by Omar et al. [Omar et al.
2019]. Once data is returned from the module, a hole would be
updated and more computations propagated through the rest of

the program. As proposed by Omar et al., Verso would then need
some way to represent holes in further computation. Alternatively,
Verso could cache computation so that only modified aspects of a
workflow must be re-run, not the entire program.

We have shown how to interface with external tools using mod-
ules to encapsulate I/O. Tools with programmatic APIs can be inte-
grated seamlessly into module implementations, whereas complex
black-box graphical tools—such as software for driving the tool
changing Roland CNC mill—are much more difficult to encapsulate.
In such difficult scenarios, before a complete module is built, makers
could write a preliminary module that displays a list of inputs that
they manually input into an external process, as well as a way to im-
port results from that process. Even in this stopgap scenario, Verso
is still likely to improve upon the manual import/export paradigm
by providing continuous evaluation for the rest of the workflow.

Ongoing collaborations with makers inspired Verso and the
demonstrations we chose. To date, our example workflows serve
as proofs-of-concept for how framing workflow construction as
live programming can facilitate maker exploration, even across
disparate domains. In the future, we will assess Verso’s usability in
studies with makers. As mentioned previously, we will also port
Verso’s features to more mature computational notebook tools for
increased accessibility.

8 CONCLUSION

With Verso, we have demonstrated how the paradigm of workflows
as live programs can help makers build and iterate on experimental
digital fabrication workflows. The state-of-the-art in programming
for fabrication machines presents numerous challenges for mak-
ers. We aimed to support three design goals—synchronize program
state with physical realities, allow graphical input without sacri-
ficing the flexibility of code, and, and visualize different views of
machine behavior physically in-situ—that could address currently
known problems. To this end, we contributed: a live programming
environment for near-immediate feedback when making changes
to workflows, modules for graphically interfacing with external
processes and physical machines, and TSS for generating custom
toolpath views from a set of machine instructions. We authored
three example workflows that show how Verso could solve chal-
lenges with the state of the art across disparate domains where
digital fabrication tools are beginning to play pivotal roles.

From reasoning about instruction set architectures, to handling
asynchronous I/O across distributed machines and systems, to cre-
ating bespoke data visualizations, makers—whether they realize
it or not—are becoming skilled programmers as they explore the
unique design spaces afforded by digital fabrication machines. To
this end, Verso celebrates and further encourages this emerging
programming practice by championing persistent feedback, inte-
grated control, and visualization of fine-grain machine control. By
building workflows as live programs, we move one step closer to a
future where novel production processes in art, science, and engi-
neering can be more quickly composed and more widely shared,
understood, and extended by a diverse community of makers.
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