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Data analysis is critical to science, public policy, and business. Despite their importance, statis-

tical analyses are difficult to author, especially for researchers with expertise outside of statistics.

Existing statistical tools, prioritizing mathematical expressivity and computational control, are

low-level while researchers’ motivating questions and hypotheses are high-level. The process of

translating researchers’ questions and hypotheses into low-level statistical code is error-prone.

This thesis views statistical analysis authoring as a sensemaking process that involves grappling

with domain knowledge, statistics, and programming concerns. To this end, I develop a framework

characterizing the cognitive and operational steps involved in translating research questions into

statistical analysis code, a process I term hypothesis formalization. I also design, implement, and

evaluate three new domain-specific languages (DSLs) and runtimes that embody hypothesis formal-

ization. The DSLs leverage automated reasoning to compile high-level specifications of analysis

intent into analysis code.

The first of these, Tea, is used to author Null Hypothesis Significance Tests. Analysts specify

their study design, assumptions about data, and hypotheses in Tea’s DSL. Tea represents statistical

test selection as constraint satisfaction, so it compiles an analyst’s specification into a system of

constraints to identify a set of valid statistical tests. A benchmark comparison found that Tea’s

test selection is comparable to that of experts and better than a naive test selection approach.

I also introduce Tisane, a system for authoring generalized linear models with or without mixed

effects. Analysts specify their domain knowledge in the form of a conceptual model, data collection

details, and focus of analysis in Tisane’s DSL. Internally, Tisane represents this conceptual model as

a graph. Tisane traverses the graph to derive a space of statistical models based on causal reasoning

recommendations. Then, in an interactive disambiguation process, Tisane involves analysts in



narrowing the space of possible statistical models to one final output statistical modeling script. In

case studies, we found that Tisane shifted researchers’ focus from analysis details to their research

questions and streamlined the analysis authoring process. To further improve the usability of the

Tisane DSL, I conducted an exploratory elicitation study using Tisane as a probe, designed and

implemented an improved version of Tisane as rTisane, and then evaluated rTisane in a controlled

lab study. The summative evaluation demonstrated that rTisane’s DSL helped analysts introspect

on their implicit domain assumptions more deeply, stay true to their analysis intent, and produce

statistical models that better fit the data. In all, these systems and evaluations provide evidence

that conceptually focused DSLs coupled with automated reasoning can lower the barriers to valid

analyses.

4



Acknowledgments

I am lucky to have many, many people to thank.

I thank my advisors Jeffrey Heer and René Just. Jeff, thank you for your endless creativity,

sense of humor, and focused attention in all our conversations. Thanks also for helping me navigate

personal and professional challenges with integrity. I had a lot of fun and freedom during the second

half of my PhD thanks to you. René, thank you for your consistent insistence on the details.

I have the best committee, hands down. Emery Berger, I am deeply grateful that you agreed to

meet with me, then a total stranger, at the start of your sabbatical at MSR in 2018. Who knew

that coffee would lead to many, many more espressos while we worked on Tea, Scone, and a number

of other projects. You have been my most ardent champion and creative conversational partner.

Thank you for including me in on your latest crazy idea and laughing with me through the highs and

lows of graduate school. Leilani Battle, thank you for your enthusiasm and support since you were

a postdoc at UW! It’s great to have you back. Tyler McCormick, thank you for welcoming me into

your research group and the Center for Statistics and the Social Sciences (CSSS). Our conversations

and collaboration have expanded my thinking and scholarship.

I am grateful to have been part of the warm UW CSE community throughout my PhD. In partic-

ular, I am indebted to the members of the Interactive Data Lab (IDL) with whom I overlapped dur-

ing my PhD for their camaraderie: Arvind Satyanarayan, Ham Wongsuphasawat, Dominik Moritz,

Yeaseul Kim, Younghoon Kim, Jane Hoffswell, Sherry Wu, Alex Kale, Yang Liu, Matt Conlen,

Zening Qu, Mick Kittivorawong, Ameya Patil, Junran Yang, Madeleine Grunde-McLaughlin, Josh

Horowitz, and Luke Snyder. Michael Correll and Maureen Stone, while not students in IDL, were

consistent members of the lab. Thank you, all, for keeping me humble, honest, and hopeful about

the positive social impact of great research and open-source software.

I have also been fortunate to be part of the idiosyncratic PLSE lab. To my PLSE labmates

over the years, of which there are too many to name individually, I love how ferociously curious and

whimsical you are about everything in research and life. I would not have pursued this research

without PLSE welcoming me early on. In this regard, I want to give special thanks to my friends

Sarah Chasins, James Bornholt, Mangpo Phothilimthana, Sami Davies, Chandra Nandi, Amanda

5



Swearngin, Chenglong Wang, Jasper Tran O’Leary, Gus Smith, Pavel Panchekha, and Max Willsey.

Zachary Tatlock, thank you for investing so much of yourself into making PLSE the best place to

pursue daring research, have fun, and make friends.

To Elise Dorough, thank you for everything you do to keep CSE running while still making time

to help my peers and me through any situation (and many emotions). To Joe Eckert, thank you

for answering my numerous Slack messages and cries for help even when I caused my own logistical

problems. To Elle Brown, thank you for your kindness. To Lisa Merlin, thank you for helping me

with countless reimbursements and doing everything in your power to protect me from bureaucratic

processes.

The larger UW ecosystem has also shaped my scholarship. To the members of CSSS, thank you

for welcoming me and giving me many opportunities to learn from and ask questions of scholars

across the social and statistical sciences. The interdisciplinary seminars and courses, such a Thomas

Richardson’s offering of CSSS/STAT 566 on causal reasoning, were instrumental in my graduate

education. Thanks also to the larger HCI community in DUB. There are a few individual mentors to

whom my gratitude is overdue: Daniela Rosner (HCDE), Tim Althoff (CSE), and Amy Ko (iSchool).

To Daniela, especially, thank you for sharing your brilliance, wisdom, and curiosity about “design”

and life over memorable chats in your office and on walks throughout the city.

During my PhD, I had so much fun and expanded my research horizons through two summer

internships at Microsoft Research. Mary Czerwinski, Daniel McDuff, and Ben Zorn, thank you for

entrusting me to run with new ideas, modeling constructive mentorship (which I strive to emulate),

and becoming friends over the years.

To my collaborators, thank you for your inspiration, energy, and support. Specifically, I thank

Joseph Dieleman and Goli Tsakalos, for inviting me as a volunteer with the Institute for Health

Metrics and Evaluation (IHME) the last two years of my PhD. To Sawyer Crosby and Emily

Johnson, thank you for your time and energy in showing me the ropes at IHME, sharing your

analysis experiences, and trying out and giving helpful feedback on early prototypes of my systems.

To Maureen Daum, thank you for your candor, reliability, and sense of humor as a collaborator

and friend. To Nicole de Moura, Grace Oh, Melissa Birchfield, Pranav Rajan, Shreyash Nigam,

Josh Pollock, Annie Denton, Blue A. Jo, Reiden Chea, Corinne Herzog, Vincent Pun, Irene Luo,

Ken Gu, Audrey Seo, and Edward Misback, thanks for entrusting me to mentor you during your

explorations of research and computer science. I am so immensely proud of how you have pursued

your interests, and I look forward to seeing you continue to grow!

I would not have pursued a PhD without formative mentorship and research experiences as an

undergraduate. I thank my Vanderbilt undergraduate advisors Bobby Bodenheimer and John Rieser

for encouraging me to embody and live out my curiosities. To Richard Paris and Lauren Buck, my

6



cool graduate student labmates, thank you for your friendship and our memorable dinner parties.

I also thank the Ingram Scholarship Program for fostering my commitment to civic engagement,

practice to reflect and think critically, and friendships that will continue to endure. To my REU

mentors at the University of Utah, Bill Thompson, Sarah Creem-Regehr, and Jeanine Stefanucci,

thank you for inviting me into your lab, sharing about life and research with candor, and modeling

collaboration and leadership. To Shashank Pandey and Jubi Taneja, thank you for sharing poetry,

meals, and laughter as we became friends that formative summer at Utah.

I am immensely grateful to my community in and around Seattle. To my Council of Wise Women

from Advent Anglican (especially Kristina Bresnen), Seattle Mosaic Arts (I hear you laughing, June

Chang and Claire Barnett!), and St. Mark’s Gardening Ministry (especially Kathy Sodergren, Kelly

Lundquist, and Kathy Thomason), thank you for enriching my soul. You have shared so much

wisdom in the countless hours I have sat in your presence, often in silence.

My heart is beyond a five on the fullness scale, overflowing with marbles for the “The Emotional

B*tches (Thoughts-Emotions-Behaviors)” and the healthcare professionals at The Emily Program.

Thank you for creating a true fellowship and, quite literally, keeping me alive. Patrice Staiger,

Carrie DeMartini, and Bethany Bylsma, thank you for guiding me to, through, and from The Emily

Program. Treg Isaacson, Hui Sun, and the others at Hall Health, thank you for lighting the way.

I thank my friends and family. To Bridget Claborn, thank you for your incisive questions,

belief in the poetry within and all around us (i.e., post-post-modernism, dahlias, anemones, Mary

Oliver), and commitment to weave together research and practice for social change, for life. To

Aoife Blacklaws, thank you for encouraging me in all my endeavors and sharing your awe of every

little creature. To Michael Zuch, thank you for sharing in the tender, unanswerable questions

of faith, theology, and the meaning of life. To Rachael Grenfell-Dexter, thank you for sharing

many adventures around the world and giving me permission to have fun, grow, and evolve. To

Lucy Rahner, thank you for sharing your artistry and earnest search for the truth and goodness

in everything. To Catherine Chung, thank you for keeping it real, talking with me endlessly for

days, and listening so whole-heartedly. To Maria Ventura, thank you for being quick to laugh,

judging a person’s character based on their pasta, and inspiring me in research. To Morelle Arian,

thank you for welcoming me into your family and sharing your delight in wherever life takes us. To

Olivia Bradley-Skill, thank you for encouraging me to lean into my creativity and explore ways of

combining my interests ever since we were kids. To the friends named and unnamed, I am honored

to share this life with you.

Finally, to Jared Roesch, thank you for your love and support throughout the PhD. To my

parents Ok Za Julie and Stephen Jun, thank you for your sacrifices and support. I love that you

encourage me to write better, more papers even when, by your estimation, no one reads them.

7





DEDICATION

To Bill Thompson:

Thank you for sharing your sharp intellect, patience, kindness, and love of mountains.

Thanks for modeling how to pursue important scientific endeavors and bring people along.

You’re with me always as I design studies and interpret data, crack open a can of beer at the top

of a mountain, and orienteer through the world and life.

Cheers to you, Bill.

9





Contents

1 Introduction 19

1.1 Thesis Approach and Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Challenge 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Challenge 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Challenge 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Related Work 25

2.1 Statistical Data Analysis as Sensemaking . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Empirical Accounts of Data Analysis Practice . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Tools for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Tools for Conceptual Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Tools for Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Tools for Statistical Specification . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Validity in Statistical Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Tea: A Domain-Specific Language and Runtime System for Hypothesis Testing 31

3.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Statistical Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Tea’s Domain-Specific Language . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Tea’s Constraint-based Runtime System . . . . . . . . . . . . . . . . . . . . . 41

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11



3.5.1 How does Tea compare to textbook tutorials? . . . . . . . . . . . . . . . . . . 43

3.5.2 Does Tea avoid common mistakes made by non-expert users? . . . . . . . . . 45

3.6 Discussion, Limitations, and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Hypothesis Formalization: A Conceptual Framework Characterizing How

Analysts Translate Research Questions into Statistical Analyses 49

4.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Statistical Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Statistical Data Analysis as Part of Scientific Discovery . . . . . . . . . . . . 53

4.2 Formative Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Takeaways: Expected Steps in Hypothesis Formalization . . . . . . . . . . . . 59

4.3 Exploratory Lab Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Findings and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Takeaways from the Lab Study . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Analysis of Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Findings and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Takeaways from the Analysis of Tools . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Design Implications for Statistical Analysis Software . . . . . . . . . . . . . . . . . . 76

Connect Model Implementations with Mathematical Equations . . . . . . . . . . . . 76

Express Conceptual Hypotheses to Bootstrap Statistical Model Implementation . . . 77

Co-author Conceptual and Statistical Models . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Tisane: Authoring Statistical Models via Formal Reasoning of Conceptual and

Data Relationships 83

5.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Statistical Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Early Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 System Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Tisane’s DSL and Graph Representation . . . . . . . . . . . . . . . . . . . . . 88

12



5.3.2 Statistical Model Derivation: Interactively Querying the Graph IR . . . . . . 93

5.4 Initial Evaluation: Case Studies with Researchers . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Case Study 1: Planning a New Study . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 Case Study 2: Analyzing Data for a Paper Submission . . . . . . . . . . . . . 101

5.4.3 Case Study 3: Developing Models to Inform Future Models . . . . . . . . . . 102

5.5 Discussion: System Changes and Takeaways . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 rTisane: Formalizing Conceptual Models to Author Statistical Models 105

6.1 Elicitation Lab Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.2 Key Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 System Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.1 rTisane’s Domain-Specific Language . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Two-step Interactive Compilation . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Summative Evaluation: Controlled Lab Study . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Analysis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.6 Future Work on rTisane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusion 129

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.1 Challenge 1: Make implicit domain knowledge explicit . . . . . . . . . . . . . 129

7.1.2 Challenge 2: Represent and reason about key statistical analysis decisions . . 130

7.1.3 Challenge 3: Increase analysts’ statistical understanding . . . . . . . . . . . . 130

7.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3.1 Support Interpretation of Statistical Results . . . . . . . . . . . . . . . . . . . 131

7.3.2 Guide Statistical Model Revision and Iteration . . . . . . . . . . . . . . . . . 132

7.3.3 Connect Statistical Testing and Modeling . . . . . . . . . . . . . . . . . . . . 132

13



7.3.4 Design for Additional Aspects of Validity During Statistical Analysis . . . . . 132

7.3.5 Support the Larger Data Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 135

A Content Analysis Resources 153

A.1 Dataset Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Codebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.4 Additional Findings: Contribution Types . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.5 Summaries of Papers Analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.6 Annotated Matrices for All Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B Hypothesis Formalization Lab Study Materials 221

B.1 Task 1: Hypothesis Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.2 Task 2: Conceptual Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B.3 Task 3: Statisitcal Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.4 Take-Home Analysis Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C Tisane: Additional Examples 227

C.1 Additional Examples of Graphs That May Be Constructed . . . . . . . . . . . . . . . 227

C.2 Cautioning Analysts About Adding Certain Kinds of Variables . . . . . . . . . . . . 228

D Elicitation Lab Study Materials 229

D.1 Task 1: Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

D.2 Task 2: Study Design and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 232

D.3 Task 3: Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

E rTisane Summative Evaluation Study Materials 237

E.1 Phase 1: Warm Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

E.2 Phase 2a: Express Conceptual Models, Without rTisane . . . . . . . . . . . . . . . . 239

E.3 Phase 2b: Express Conceptual Models, With rTisane . . . . . . . . . . . . . . . . . . 240

E.4 Phase 3a: Implement Statistical Models, Without rTisane . . . . . . . . . . . . . . . 241

E.5 Phase 3b: Implement Statistical Models, With rTisane . . . . . . . . . . . . . . . . . 242

E.6 Dataset for Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

14



List of Figures

3.1 Tea program and its mode-dependent executions. . . . . . . . . . . . . . . . . 40

4.1 Definition and overview of the hypothesis formalization steps and process. 51

4.2 Relationship between hypothesis formalization and prior work. . . . . . . . 54

4.3 Example reorderable matrix for Ngo et al.’s “Development of holistic

episodic recollection” published in Psychological Science (2019) [NHNO19]

from the formative content analysis. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Sample statistical specification from analyst D8 in the lab study. . . . . . . 64

5.1 Example graph representation variables and relationships. . . . . . . . . . . 89

5.2 Code snippets of conceptual and data measurement relationships written

in Tisane’s DSL and their representation in Tisane’s graph IR. . . . . . . . 91

5.3 Graphs demonstrating causal parents, possible causal omissions, and pos-

sible confounding associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Example Tisane GUI for disambiguation. . . . . . . . . . . . . . . . . . . . . . 98

6.1 rTisane’s conceptual model disambiguation interface. . . . . . . . . . . . . . 113

6.2 rTisane’s statistical model disambiguation interface. . . . . . . . . . . . . . . 114

6.3 Example conceptual models from participants without rTisane. . . . . . . . 119

C.1 More complex examples of moderates written in Tisane’s DSL and their

representation in Tisane’s graph IR. . . . . . . . . . . . . . . . . . . . . . . . . 227

C.2 A graph demonstrating an edge case for candidate main effect identifica-

tion, where the graph contains only associative edges. . . . . . . . . . . . . . 228

C.3 An example of the warning text given for potential confounding associations.228

15





List of Tables

3.1 Comparison of Tea to other tools. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Results of applying Tea to 12 textbook tutorials. . . . . . . . . . . . . . . . . 44

4.1 Overview of the software tools included in our analysis. . . . . . . . . . . . . 72

5.1 Overview of the study design tools that informed Tisane’s DSL. . . . . . . 87

5.2 The available family and link functions in Tisane. . . . . . . . . . . . . . . . . 96

6.1 Participants in summative evaluation. . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Statistical model comparisons with and without rTisane. . . . . . . . . . . . 118

A.1 The codebook for analyzing the content of research publications. . . . . . . 155

A.2 Summary of CHI papers in our dataset. . . . . . . . . . . . . . . . . . . . . . . 158

A.3 Summary of JFE papers in our dataset. . . . . . . . . . . . . . . . . . . . . . . 160

A.4 Summary of Nature papers in our dataset. . . . . . . . . . . . . . . . . . . . . 162

A.5 Summary of PNAS papers in our dataset. . . . . . . . . . . . . . . . . . . . . . 164

A.6 Summary of PS papers in our dataset. . . . . . . . . . . . . . . . . . . . . . . . 166

17





Chapter 1

Introduction

Statistical analysis plays a critical role in how people make decisions. Policy makers rely on models to

track disease, inform health recommendations, and allocate resources. Scientists develop, evaluate,

and compare theories based on data. Journalists report on new findings in science, which individuals

use to inform decisions that impact their nutrition, finances, and other aspects of their lives. Faulty

statistical models can lead to spurious estimations, findings that do not generalize or reproduce,

and a misinformed public.

In the context of scientific research, accurate statistical analyses are essential to scientific repro-

ducibility. In a 2016 Nature survey, 1,500 identified “selective reporting”, “pressure to publish,” and

“low statistical power or poor analysis” as the top three contributors to the reproducibility crises in

their disciplines [Bak16]. The scientists also articulated that a “better understanding of statistics”

would be the best approach to improve reproducibility [Bak16].

Despite the prevalence and central importance of statistical analyses, they remain challeng-

ing to author accurately. Key to analysis authoring is grappling with and translating implicit

domain knowledge into statistical models executable in code [WP99; CEG+16]. This dissertation

hypothesizes that better understanding and supporting this translation process can enable statistical

non-experts to author analyses accurately.

1.1 Thesis Approach and Statement

This dissertation (i) probes into how and why translating domain knowledge into executable sta-

tistical models in code is difficult and (ii) develops new computational tools that help statistical

non-experts author valid analyses by integrating disciplinary, statistical, and programming details.

Moving between building systems and empirically studying analysts, this dissertation demonstrates

the following:

19



Thesis Statement A combination of domain-specific languages (DSLs) and automated reasoning

can help statistical non-experts more readily author valid analyses. Analysis DSLs express concep-

tual knowledge, data collection procedures, and analysis intents. Automated reasoning methods

then compile the conceptual DSL specifications into statistical analysis code.

The following three challenges fall out of this thesis statement.

Challenge 1: Make implicit domain knowledge explicit Designing abstractions focused on

conceptual knowledge requires identifying what domain knowledge analysts want and can express

and then balancing these constraints with what automated reasoning approaches may require. What

is easy to express and what is easy to assume for the sake of automation may be at odds, especially

when analysts provide ambiguous specifications that could be compiled into multiple statistical

analyses. The challenge, therefore, is to design language constructs that are usable for analysts and

useful for automated reasoning, leveraging interactive program specification as necessary.

Challenge 2: Represent and reason about key statistical analysis decisions A central

idea in this thesis is that software systems should take on the responsibility of translating conceptual

knowledge into statistical analyses. This is akin to representing the conceptual knowledge analysts

express and compiling it to statistical analyses that respect statistical best practices and rules.

To achieve this, selecting representations that lend themselves to elegant reasoning methods is a

technical challenge.

Challenge 3: Increase analysts’ statistical understanding While automating statistical

analysis can be helpful, analysts relying on data to make high-impact decisions (e.g., policy, sci-

entific discovery) often need to understand why an analysis approach is appropriate and what the

implications of the results are to their domain. Furthermore, software can inform how users approach

future analyses. Therefore, educating analysts about the applicability and impact of statistical de-

cisions and guiding their interpretation of results are important.

1.2 Summary of Contributions

This dissertation contributes principles and systems for designing statistical analysis tools for sta-

tistical non-experts. The contributions can be summarized as follows:

1. A conceptual framework characterizing statistical analysis authoring.

(a) Our theory of hypothesis formalization describes the cognitive and operational steps

involved in translating a high-level conceptual research question and hypothesis into a
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statistical analysis implemented in code. Hypothesis formalization explains why existing

statistical tools fail to support statistical non-experts and informs the design of systems

developed in this dissertation.

(b) We provide the first account scrutinizing the hypothesis formalization process in situ.

Whereas previous studies of data analysis have relied on self-reports about analysis pro-

cesses, we conduct an in-depth lab study where we observe analysts prepare and even

start to implement statistical models firsthand.

(c) We qualitatively assess 20 statistical analysis libraries and standalone systems and illus-

trate how their designs represent the current ecosystem of statistical tools and presently

influence data analysis practice. Furthermore, combining our theory of hypothesis for-

malization and this assessment of tools, we develop three design implications for how

data analysis software could better serve statistical non-experts.

2. The design, implementation, and evaluation of new DSLs. These DSLs explore ways to design

abstractions that prioritize making implicit domain knowledge explicit.

(a) The Tea DSL provides a high-level API so that analysts can make explicit their assump-

tions about the data and their hypotheses to assess using Null Hypothesis Significance

Tests.

(b) The Tisane DSL captures analysts’ “fuzzy” assumptions about how variables relate in

their discipline. The variables and relationships comprise a conceptual model.

(c) An exploratory elicitation study showed how statistical non-experts implicitly think

about causality, how they would like to express their implicit assumptions, and what

they expect language constructs describing conceptual models to mean. These findings

informed the design of rTisane’s DSL.

(d) A benchmark comparison, a series of case studies, and a controlled lab study demonstrate

the benefit of these DSLs in helping analysts author valid statistical analyses. The case

studies and controlled lab study also show how analysts become more aware of their

implicit assumptions as a result of using the DSLs.

3. Formal representations and automated reasoning approaches for statistical analysis authoring.

To support statistical testing and modeling, we develop representations that allow automated

reasoning to compile conceptual specifications into statistical analyses.

(a) In Tea, we implement a constraint-based model and knowledge base for Null Hypothesis

Significance Tests.
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(b) In Tisane, we develop an intermediate graph representation to summarize key conceptual

assumptions and data collection details. Importantly, a subgraph of the representation

is a causal diagram useful for deriving statistical models formally.

(c) Finally, we develop an approach in Tisane and rTisane for interactively compiling high-

level conceptual specifications into statistical models. Interfaces surface key aspects of

specifications, encourage deeper reflection on implicit knowledge, and elicit clarification

when needed.

1.3 Thesis Outline

Chapter 2 covers related work that contextualizes the above contributions. The remainder of the

dissertation describes how through iterative system development and empirical studies, we came to

develop new DSLs, representations, and reasoning approaches for authoring statistical analyses.

Chapter 3 presents Tea, a DSL and runtime system for Null Hypothesis Significance Testing

(NHST). After discussing more specific related work and explaining the rationale behind support-

ing NHST (Section 3.1), the chapter describes a usage scenario that illustrates how an analyst

would use Tea and how it differs from existing tools (Section 3.2), discusses key design considera-

tions to improve statistical testing practice (Section 3.3), describes the DSL (Subsection 3.4.1) and

constraint-based runtime system (Subsection 3.4.2), evaluates Tea against a corpus of expert test

choices and a naive test selection regime (Section 3.5), and briefly discusses the limitations and

opportunities for future work (Section 3.6). The chapter concludes with a summary of how our

work on Tea furthers the thesis of this dissertation.

Chapter 4 introduces our theory of hypothesis formalization. While Tea established the feasibil-

ity and benefits of designing a DSL focused on capturing implicit data assumptions and hypotheses

and developing a formal model of statistical test selection, this chapter steps back to describe data

analysis more holistically. This chapter retrospectively justifies our design in Tea and directly in-

forms our work on Tisane, the following chapter. Chapter 4 connects hypothesis formalization to

characterizations of “statistical thinking” and situates data analysis in the larger context of scientific

discovery (Section 4.1). The chapter proceeds to describe a content analysis that sensitized us to

key hypothesis formalization steps (Section 4.2), a lab study observing data analysts in situ (Sec-

tion 4.3), and a qualitative assessment of existing statistical analysis tools (Section 4.4). Based on

these empirical studies, we derive three design implications for how tools can facilitate hypothesis

formalization (Section 4.5) and discuss what problem solving strategies (and shortcuts) analysts em-

ploy without explicit support for hypothesis formalization (Section 4.6). This chapter also concludes

with a summary of how the theory of hypothesis formalization informs the thesis.
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After covering related work and background on linear modeling (Section 5.1), Chapter 5 describes

the Tisane DSL (Section 5.3) and case studies evaluating Tisane (Section 5.4). Based on researchers’

feedback in the case studies, we conclude that Tisane’s DSL and interactive disambiguation process

are promising ways to assist statistical non-experts in authoring linear models. Also, feedback on

DSL language constructs motivated us to probe into how novice analysts want to express their

implicit domain knowledge and challenges they face, which led to the following chapter.

Chapter 6 is the best representation of how this dissertation grapples with an understanding of

data analysis practices (i.e., hypothesis formalization), statistical methods, and empirical evidence

for what analysts find usable in order to iteratively design and evaluate a DSL and interactive

disambiguation process. Chapter 6 starts with a study of how statistical non-experts want to express

their implicit domain knowledge (Section 6.1). The chapter distills key study observations into

design goals (Section 6.2) and proceeds with system implementation details for rTisane (Section 6.3).

A controlled lab study evaluating rTisane (Section 6.4) serves as a summative evaluation of the

key tenets of this dissertation. The chapter concludes with key insights derived from iteratively

designing and evaluating Tisane and rTisane as well as a few immediate next steps for improving

rTisane based on study findings.

Finally, Chapter 7 revisits the key challenges of the thesis and how the projects in this disser-

tation address each (Section 7.1). Chapter 7 also briefly discusses the real-world impact the DSLs

developed in this dissertation have had, offering another form of evidence in support of the thesis

(Section 7.2). The chapter culminates with how the projects in this dissertation create a founda-

tion for pursuing research directions that make data analysis authoring valid-by-design and more

approachable for statistical non-experts (Section 7.3).
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Chapter 2

Related Work

This dissertation builds on theories of sensemaking, empirical findings on current analytical praxis,

and existing tools throughout the data lifecycle. Additionally, this dissertation uses Donald Camp-

bell’s theory of validity to motivate system designs and interpret evaluation results. Subsequent

sections provide additional background as applicable.

2.1 Statistical Data Analysis as Sensemaking

Human beings engage in sensemaking to acquire new knowledge. Several theories of sensemak-

ing [PC05; RSPC93; KPRP07] describe how and when human beings seek and integrate new data

(e.g., observations, experiences, etc.) to develop their mental models about the world.

Russell et al. [RSPC93] define sensemaking as “the process of searching for a representation and

encoding data in that representation to answer task-specific questions.” Russell et al. emphasize

the importance of external representations. Sensemaking is the iterative process of searching for

and refining external representations in a “learning loop complex” that involves transitioning back

and forth between (i) searching for and (ii) instantiating representations. External representations

are critical because they influence the quality of conclusions reached at the end of the sensemaking

process and affect how much time and effort is required in the process. Some representations

may lead to insights more quickly. Indeed, we posit and find that statistical analysis, specifically

hypothesis formalization (Chapter 4), is a learning loop [RSPC93] where the conceptual research

question or hypothesis is an external representation of a set of assumptions analysts may have

about the world (e.g., an implicit causal model), that ultimately affects which statistical models are

implemented and which results are obtained. We also find that there are smaller learning loops—for

revising explicit causal models, mathematical equations, and partially specified models—embedded

in the larger loop of hypothesis formalization.
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Grolemund and Wickham argued for statistical data analysis as a sensemaking activity [GW14].

They emphasize the (1) bidirectional nature of updating mental models of the world and hypotheses

based on data and collecting data based on hypotheses and (2) the process of identifying and recon-

ciling discrepancies between hypotheses and data. Similar to Russell et al., Grolemund and Wick-

ham’s model demonstrates the importance of representing and re-representing conceptual knowl-

edge. Grolemund and Wickham’s theory of data analysis includes a back and forth between an

analyst’s “schema” of how a phenomenon occurs in the world, a statistical model, and data. Ana-

lysts’ domain expertise influence their schemas, which represent conceptual knowledge about known

and unknown causal mechanisms, for example. Analysts’ conceptual schema directly inform their

hypotheses, which are statistical predictions represented in statistical models. These statistical

models are then compared to collected data, and any discrepancies between the data and hypoth-

esis require analysts to re-examine and possibly update their statistical model, schema, or both.

Extending Grolemund and Wickham’s model, our work on hypothesis formalization differentiates

between conceptual and statistical hypotheses and probes the phases an analyst must go through

to encode a conceptual hypothesis into a statistical model.

Given the centrality of external representations of implicit conceptual knowledge to authoring

statistical analyses that help analysts make sense of the world, we argue that our statistical software

should focus on helping analysts to express their conceptual hypotheses and implicit domain knowl-

edge. Through the development of three software systems, Tea (Chapter 3), Tisane (Chapter 5),

and rTisane (Chapter 6), we explore how to design programming abstractions and what those ab-

stractions should include in order for statistical non-experts to externalize their implicit conceptual

knowledge about a domain.

2.2 Empirical Accounts of Data Analysis Practice

Data analysis involves a number of tasks that involve data discovery, wrangling, profiling, modeling,

and reporting [KPHH12]. Extending the findings of Kandel et al. [KPHH12], both Alspaugh et

al. [AZL+18] and Wongsuphasawat et al. [WLH19] propose exploration as a distinct task. Whereas

Wongsuphasawat et al. argue that exploration should subsume discovery and profiling, Alspaugh et

al. describe exploration as an alternative to modeling. The importance of exploration and its role in

updating analysts’ understanding of the data and their goals and hypotheses is of note, regardless

of the precise order or set of tasks. Battle and Heer describe exploratory visual analysis (EVA),

a subset of exploratory data analysis (EDA) where visualizations are the primary interfaces and

outputs for exploring data, as encompassing both data-focused (bottom-up) and goal- or hypothesis-

focused (top-down) investigations [BH19]. In Chapter 4, we found that (i) analysts explored their
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data before modeling and (ii) exploratory observations sometimes prompted conceptual shifts in

hypotheses (bottom-up) but at other times were guided by hypotheses and only impacted statistical

analyses (top-down). In this way, data exploration appears to be an important intermediate step

in hypothesis formalization, blurring the lines between exploratory and confirmatory data analysis.

Decisions throughout analysis tasks can give rise to a “garden of forking paths” [GL13], which

compounds for meta-analyses synthesizing previous findings [KKH19]. Liu, Boukhelifa, and Ea-

gan [LBE19] proposed a broad framework that characterizes analysis alternatives using three dif-

ferent levels of abstraction: cognitive (e.g., shifts in conceptual hypotheses), artifact (e.g., choice in

statistical tools), and execution (e.g., computational tuning). Cognitive alternatives involve more

conceptual shifts and changes (e.g., mental models, hypotheses). Artifact alternatives pertain to

tooling (e.g., which software is used for analysis?), model (e.g., what is the general mathematical

approach?), and data choices (e.g., which dataset is used?). Execution alternatives are closely re-

lated to artifact alternatives but are more fine-grained programmatic decisions (e.g., hyperparameter

tuning). We find that hypothesis formalization involves all three levels of abstraction and provide

a more granular depiction of how these levels cooperate with one another (Chapter 4).

Moreover, Liu, Althoff, and Heer [LAH19] identified numerous decision points throughout the

data lifecycle, which they call end-to-end analysis. They found that analysts often revisit key

decisions during data collection, wrangling, modeling, and evaluation. Liu, Althoff, and Heer also

found that researchers executed and selectively reported analyses that were already found in prior

work and familiar to the research community. The focus of this thesis is on how any single pass

or iteration occurs. We approach this work from the perspective that by understanding a single

iteration, we may be able to focus analysts on their iterations that are most substantial and impactful

and eliminate a number of unnecessary iterations that arise due to mistakes in aligning conceptual

and statistical concerns, which we found in our case studies (see Section 5.4).

Importantly, our work differs in (i) scope and (ii) method from prior work in HCI on data anal-

ysis practices. Whereas translating a research question or hypothesis into a statistical analysis has

remained implicit in prior descriptions of data analysis, we explicate this specific process. Addition-

ally, while previous researchers have relied primarily on post-analysis interviews with analysts, our

lab study (Section 4.3) enables us to observe decision making during this process in-situ.

2.3 Tools for Data Analysis

The software ecosystem for data analysis is vibrant, with numerous programming languages, soft-

ware packages, and graphical-first tools. A common limitation of existing software is its siloing of

statistical specification from the conceptual and data collection details that inadvertently influence
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statistical analysis. In contrast, the systems in this dissertation explore ways to leverage implicit

conceptual and data collection knowledge to derive statistical analyses. Below, we compare and con-

trast this dissertation with existing software for conceptual modeling, study design, and statistical

specification.

2.3.1 Tools for Conceptual Modeling

For statistical experts, causal diagramming is a common approach to externalizing implicit concep-

tual models. For instance, Dagitty [THK11] supports authoring, editing, and formally analyzing

causal graphs through code and a visual editor. The key limitation of Dagitty is that it requires

analysts to specify a formal causal graph, which statistical non-experts, including many domain

experts, may not be able to do [SSY20; SV18; VDN+13]. In fact, an open challenge for causal

reasoning and discovery is in getting domain experts to express their implicit knowledge in a way

that can be formally represented and reasoned about. Our work on Tisane directly addresses this

challenge. Moreover, even if analysts are able to express causal diagrams in Dagitty, Dagitty does

not translate queries analysts may have about the causal diagram (i.e., research questions, hypothe-

ses) into statistical models that could assess specific relationships of interest. Tisane also overcomes

this limitation for a set of queries about average causal effect.

2.3.2 Tools for Study Design

Several DSLs [SH17; BEB14], software packages [Tan21; BCCH19a], and standalone applications [MABL+07;

EWBLM19] specialize in experiment design. A primary focus is to provide researchers low-level con-

trol over trial-level and randomization details. For example, JsPsych [DL15a] gives researchers fine-

grained control over the design and presentation of stimuli for online experiments. At a mid-level

of abstraction, Touchstone [MABL+07] is a tool for designing and launching online experiments. It

also refers users to R and JMP for data analysis but does not help users author an appropriate sta-

tistical model. Touchstone2 [EWBLM19] helps researchers design experiments based on statistical

power. At a high-level of abstraction, edibble [Tan21] helps researchers plan their data collec-

tion schema. edibble aims to provide a “grammar of study design” that focuses users on their

experimental manipulations in relation to specific units (e.g., participants, students, schools), the

frequency and distribution of conditions (e.g., within-subjects vs. between-subjects), and measures

to collect (e.g., age, grade, location) in order to output a table to fill in during data collection.

While Tisane’s DSL uses an abstraction level comparable to edibble, Tisane is focused on using

the expressed data measurement relationships to infer a statistical model. Additionally, Tisane’s

DSL provides conceptual relationships that are out of the scope of edibble but important for

specifying conceptually valid statistical models.
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2.3.3 Tools for Statistical Specification

A contribution of this thesis is a closer examination of how existing statistical analysis tools fail

to support authoring (Section 4.4). Here, we contrast the systems developed in this thesis to

discipline-specific software tools for research and more general automated statistics approaches.

Research has introduced tools to support statistical analysis in diverse domains. ExperiScope

[GDH07] supports users in analyzing complex data logs for interaction techniques. ExperiScope

surfaces patterns in the data that would be difficult to detect manually and enables researchers

to collect noisier data in the wild that have greater external validity. Statsplorer [WSVB15] is an

educational web application for novices learning about statistics. While more focused on visualizing

various alternatives for statistical tests, Statsplorer automates test selection (for a limited number of

statistical tests and by executing simple switch statements) and the checking of assumptions (though

it is currently limited to tests of normality and equal variance). Wacharamanotham [WSVB15]

found that Statsplorer helps HCI students perform better in a subsequent statistics lecture. Similar

in scope to Statsplorer, Tea is designed to help statistical non-experts author Null-Hypothesis

Significance Tests. Tea supports twice as many statistical tests as Statsplorer, suggesting that Tea’s

constraint-based approach is more expressive than Statsplorer’s decision-tree implementation for

statistical test selection. In contrast to the above systems, a key design consideration for Tea and

Tisane has been their ability to apply widely across disciplines and integrate into many existing

workflows. Therefore, the systems are implemented as embedded DSLs in Python and R, two widely

used programming languages for data science.

The Automatic Statistician [LDG+14] generates a report listing all “interesting” relationships

(e.g., correlations, statistical models, etc.). Although apparently complete, the Automatic Statis-

tician may overlook analyses that are conceptually interesting and difficult, if not impossible, to

deduce from data alone. Furthermore, AutoML tools such as Auto-WEKA [THHLB13], auto-

sklearn [FKE+15], and H2O AutoML [LP20] also prioritize finding patterns in data and aim to

make statistical methods more widely usable. However, Tea and Tisane differ from AutoML efforts

in their focus on analysts, such as researchers developing scientific theories, who prioritize expla-

nation, not just prediction. As a result, Tisane focuses on analysts who prioritize explanation, not

just prediction, such as support for specifying GLMMs, which some prominent AutoML tools, such

as auto-sklearn [FKE+15], omit.

2.4 Validity in Statistical Data Analysis

Finally, an aspect of this thesis is that software with conceptually grounded programming abstrac-

tions and automated reasoning can improve the validity of analyses. There are many working
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definitions of “validity,” from predictive accuracy to a quality of how well experiments are designed

to a trade-off between model simplicity and fit (e.g., R-squared). Donald Campbell’s theory of

validity [Sha10], widely adopted across disciplines, provides a framework for reasoning about and

unifying many intuitive definitions of validity. Campbell defines four dimensions of validity: internal

validity, external validity, statistical conclusion validity, and construct validity. This thesis focuses

on enhancing statistical conclusion, external, and internal validity through the correct application

and specification of statistical analyses that match analysts’ intentions (i.e., their research questions

and hypotheses) and data collection procedures. We do not address construct validity because con-

struct validity is specific to a discipline’s theories and is often debated over a relatively long period

of time. In the conclusion (Chapter 7), we touch upon opportunities for future work to address

construct validity through the application of recent natural language processing advances.
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Chapter 3

Tea: A Domain-Specific Language and

Runtime System for Hypothesis Testing

The enormous variety of modern quantitative methods leaves researchers with the non-

trivial task of matching analysis and design to the research question.

- Ronald Fisher [Fis37]

Since the development of modern statistical methods (e.g., Student’s t-test, ANOVA, etc.),

statisticians have acknowledged the difficulty of identifying which statistical tests people should use

to answer their specific research questions. Almost a century later, choosing appropriate statistical

tests for evaluating a hypothesis remains a challenge. As a consequence, errors in statistical analyses

are common [KR12], especially given that data analysis has become a common task for people with

little to no statistical expertise.

A wide variety of tools (such as SPSS [Wik19d], SAS [Wik19c], and JMP [Wik19a]), program-

ming languages (e.g., R [Wik19b]), and libraries (including numpy [Oli06], scipy [JOP+21a], and

statsmodels [SP10]), enable people to perform specific statistical tests, but they do not address the

fundamental problem that users may not know which statistical test to perform and how to verify

that specific assumptions about their data hold. In fact, all of these tools place the burden of valid,

replicable statistical analyses on the user and demand deep knowledge of statistics.

Users not only have to identify their research questions, hypotheses, and domain assumptions,

but also must select statistical tests for their hypotheses (e.g., Student’s t-test or one-way ANOVA).

For each statistical test, users must be aware of the statistical assumptions each test makes about

the data (e.g., normality or equal variance between groups) and how to check for them, which

requires additional statistical tests (e.g., Levene’s test for equal variance), which themselves may

demand further assumptions about the data. This cognitively demanding process requires significant
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knowledge about statistical tests and their preconditions as well as the ability to perform the tests

and verify their preconditions. This process can easily lead to mistakes.

In response, we design and developed Tea1, a high-level declarative language for automating

statistical test selection and execution that abstracts the details of statistical analysis from the users.

Tea captures users’ hypotheses and domain knowledge, translates this information into a constraint

satisfaction problem, identifies all valid statistical tests to evaluate a hypothesis, and executes the

tests. Tea’s higher-level, declarative nature aims to lower the barrier to valid, replicable analyses.

Tea is easy to integrate directly into common data analysis workflows for users who have minimal

programming experience. Tea is implemented as an open-source Python library, so programmers

can use Tea wherever they use Python, including within Python notebooks.

In addition, Tea is flexible. Its abstraction of the analysis process and use of a constraint solver

to select tests is designed to support its extension to emerging statistical methods, such as Bayesian

analysis. Currently, Tea supports frequentist Null Hypothesis Significance Testing (NHST).

This work makes the following contributions:

• a novel DSL for automatically selecting and executing statistical analyses based on users’

hypotheses and domain knowledge (Subsection 3.4.1),

• a runtime system that formulates statistical test selection as a maximum constraint satisfaction

problem (Subsection 3.4.2), and

• an initial evaluation showing that Tea can express and execute common NHST statistical tests

(Section 3.5).

After describing related work, the chapter describes a usage scenario, providing an overview of

Tea (Section 3.2). Then, we discuss the concerns about statistics in the HCI community that shaped

Tea’s design (Section 3.3), the implementation of Tea’s programming language (Subsection 3.4.1),

the implementation of Tea’s runtime system (Subsection 3.4.2), and the evaluation of Tea as a

whole (Section 3.5). The chapter concludes with a discussion of Tea’s goals, limitations, and future

work (Section 3.6) and a summary of how Tea demonstrates my thesis(Section 3.7)

3.1 Background and Related Work

Domain-specific languages encapsulate key, routine ideas of domain (e.g., statistical analysis), mak-

ing programs more concise to write for end-users, providing interfaces to connect with other DSLs

1named after Fisher’s “Lady Tasting Tea” experiment [Fis37]
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and systems, and shift the burden of accurate processing from users to systems through special-

ized reasoning. In the context of the data lifecycle, researchers have developed DSLs that fo-

cus on supporting various stages of data exploration, experiment design, and data cleaning. To

support data exploration, Vega-Lite [SMWH17] is a high-level declarative language that supports

users in developing interactive data visualizations without writing functional reactive components.

PlanOut [BEB14] is a DSL for expressing and coordinating online field experiments. More niche than

PlanOut, Touchstone2 provides the Touchstone Language for specifying condition randomization in

experiments (e.g., Latin Squares) [EWBLM19].To support rapid data cleaning, Wrangler [KPHH11]

combines a mixed-initiative interface with a declarative transformation language. Tea provides a

language to support another crucial step in the data life cycle: statistical analysis. Tea can be inte-

grated into data analysis workflows and work in tandem with tools such as Wrangler that produce

cleaned CSV files ready for analysis.

Furthermore, languages provide semantic structure and meaning that can be reasoned about

automatically. For domains with well defined goals, constraint solvers can be a promising technique.

Some of the previous constraint-based systems in HCI have been Scout [SKF18], a mixed-initiative

system for rapidly prototyping interface designs. Designers specify high-level constraints based

on design concepts (e.g., a profile picture should be more emphasized than the name), and Scout

synthesizes novel interfaces. Scout also uses Z3’s theories of booleans and integer linear arithmetic.

More specific to the data lifecycle are Draco [MWN+19] and SetCoLa [HBH18], which formalize

visualization constraints for graphs. Whereas SetCoLa is specifically focused on graph layout, Draco

formalizes visualization best practices as logical constraints to synthesize new visualizations. The

knowledge base can grow and support new design recommendations with additional constraints.

Similarly, Tea codifies tests and their preconditions as constraints in a knowledge base. Tea aims

to provide an architecture that supports the growth of a statistical analysis knowledge base as

communities adopt new statistical best practices and methods. To our knowledge, Tea is the first

constraint-based system for statistical analysis.

3.1.1 Statistical Scope

Tea is designed for statistical tests common to Null Hypothesis Significance Testing (NHST). While

there are calls to incorporate other methods of statistical analysis [KNH16; KR12], Null Hypoth-

esis Significance Testing (NHST) remains the norm in HCI and other disciplines. Therefore, Tea

currently implements a module for NHST with the tests found to be most common by Wacharaman-

otham et al. [WSVB15]. In particular, Tea supports four classes of tests: correlation (parametric:

Pearson’s r, Pointbiserial; non-parametric: Kendall’s τ , Spearman’s ρ), bivariate mean comparison

(parametric: Student’s t-test, Paired t-test; non-parametric: Mann-Whitney U, Wilcoxon signed
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rank, Welch’s), multivariate mean comparison (parametric: F-test, Repeated measures one way

ANOVA, Factorial ANOVA, Two-way ANOVA; non-parametric: Kruskal Wallis, Friedman), and

comparison of proportions (Chi Square, Fisher’s Exact). Tea also supports an implementation of

bootstrapping [Efr92].

3.2 Usage Scenario

1 import tea

2 tea.data('UScrime.csv')

3 variables = [

4 {

5 'name': 'So',

6 'data type': 'nominal',

7 'categories': ['0','1']

8 },

9 {

10 'name': 'Prob',

11 'data type': 'ratio',

12 'range': [0,1]

13 }

14 ]

15 tea.define_variables(variables)

16

17 study_design = {

18 'study type': 'observational study',

19 'contributor variables': 'So',

20 'outcome variables': 'Prob'

21 }

22 tea.define_study_design(study_design)

23

24 assumptions = {

25 'groups normally distributed': [['So', 'Prob']],

26 'Type I (False Positive) Error Rate': 0.05

27 }

28 tea.assume(assumptions)

29

30 hypothesis = 'So:1 > 0'

31 tea.hypothesize(['So', 'Prob'], hypothesis)

Listing 3.1: Sample Tea program. The specification outlines an observational study to analyze

the relationship between geographic location (‘So’) and probability of imprisonment (‘Prob’) in a

common USCrime data set [VR13; Kab11]. See Section 3.2 for an explanation of the code. Tea

programs specify 1) data, 2) variables, 3) study design, 4) assumptions, and 5) hypotheses.
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This section describes how an analyst can use Tea to answer their research questions. We use

as an example analyst a historical criminologist who wants to determine how imprisonment differed

across regions of the US in 19602. Listing 3.1 shows the Tea code for this example.

The analyst specifies the data file’s path in Tea. Tea handles loading and storing the data set

for the duration of the analysis session. The analyst does not have to worry about reformatting the

data during the analysis process in any way.

The analyst asks if the probability of imprisonment was higher in southern states than in non-

southern states. The analyst identifies two variables that could help them answer this question: the

probability of imprisonment (‘Prob’) and geographic location (‘So’). Using Tea, the analyst defines

the geographic location as a dichotomous nominal variable where ‘1’ indicates a southern state and

‘0’ indicates a non-southern state, and indicates that the probability of imprisonment is a numeric

data type (ratio) with a range between 0 and 1.

The analyst then specifies their study design, defining the study type to be “observational study”

(rather than “experimental study”) and defining the contributor (independent) variable to be the

geographic location and the outcome (dependent) variable to be the probability of imprisonment.

Based on their prior research, the analyst knows that the probability of imprisonment in southern

and non-southern states is normally distributed. The analyst provides an assumptions clause to Tea

in which they specify this domain knowledge. They also specify an acceptable Type I error rate

(probability of finding a false positive result), more colloquially known as the ‘significance threshold’

(α = .05) that is acceptable in criminology. If the analyst does not have assumptions or forgets to

provide assumptions, Tea will use the default of α = .05.

The analyst hypothesizes that southern states will have a higher probability of imprisonment

than non-southern states. The analyst directly expresses this hypothesis in Tea. Note that at no

point does the analyst indicate which statistical tests should be performed.

From this point on, Tea operates entirely automatically. When the analyst runs their Tea

program, Tea checks properties of the data and finds that the Student’s t-test is appropriate. Tea

executes the Student’s t-test and non-parametric alternatives, such as the Mann-Whitney U test,

which provide alternative, consistent results.

Tea generates a table of results from executing the tests, ordered by their power (i.e., results

from the parametric t-test will be listed first given that it has higher power than the non-parametric

equivalent). Based on this output, the analyst concludes that their hypothesis—that the probability

of imprisonment was higher in southern states than in non-southern states in 1960—is supported.

The results from alternative statistical tests support this conclusion, so the analyst can be confident

2The example is taken from Ehrlich [Ehr73] and Vandaele [Van87]. The data set comes as part of the MASS
package in R.
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Table 3.1: Comparison of Tea to other tools.

Despite the published best practices for statistical analyses, most tools do not help users select appropriate
tests. Tea not only addresses the best practices but also supports reproducing analyses. Below, ∼ indicates
a practice is sometimes supported.

Best practices SAS SPSS JMP R Statsplorer
[WSVB15] Tea

Explicit statement of user assumptions — — — — — X
Automatic verification of test preconditions — — ∼ ∼ X X

Automatic accounting of multiple comparisons — — — — X X
Surface alternative analyses — — — — — X

Contextualize results X ∼ X ∼ X X
Easy to reproduce analysis X X — X — X

in their assessment.

The analyst can now share their Tea program with colleagues. Other researchers can easily see

what assumptions the analyst made and what the intended hypothesis was (since these are explicitly

stated in the Tea program), and reproduce the exact results using Tea.

3.3 Design Considerations

In designing Tea’s language and runtime system, we considered best practices for conducting statisti-

cal analyses and derived our own insights on improving the interaction between users and statistical

tools.

We identified five key recommendations for statistical analysis from Cairns’ report on common

statistical errors in HCI [Cai07], which echoes many concerns articulated by Wilkinson [Wil99], and

from the American Psychological Association’s Task Force on Statistical Inference [Ass96]:

• Users should make explicit their assumptions about the data [Ass96].

• Users should verify and report the results from checking assumptions statistical tests make

about the data and variables [Cai07; Ass96].

• Users should account for multiple comparisons [Cai07; Ass96].

• When possible, users should consider alternative analyses that test their hypothesis and select

the simplest one [Ass96].

• Users should contextualize results from statistical tests using effect sizes and confidence inter-

vals [Ass96].

An additional practice we wanted to simplify in Tea was reproducing analyses. Table 3.1 shows

how Tea compares to current tools in supporting these best practices.

Based on these guidelines, we identified two key interaction principles for Tea:
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1. Users should be able to express their expertise, assumptions, and intentions for analysis. Users

have domain knowledge and goals that cannot be expressed with the low-level API calls to the

specific statistical tests required by the majority of current tools. A higher level of abstraction

that focuses on the goals and context of analysis is likely to appeal to users who may not have

statistical expertise (Subsection 3.4.1).

2. Users should not be burdened with statistical details to conduct valid analyses. Currently,

users must not only remember their hypotheses but also identify possibly appropriate tests

and manually check the preconditions for all the tests. Simplifying the user’s procedure by

automating the test selection process can help reduce cognitive demand (Subsection 3.4.2).

While there are calls to incorporate other methods of statistical analysis [KNH16; KR12], Null

Hypothesis Significance Testing (NHST) remains the norm in HCI and other disciplines. There-

fore, Tea currently implements a module for NHST with the tests found to be most common

by [WSVB15].

3.4 System Overview

Tea consists of a high-level DSL and a runtime system. There are three key steps to compiling a

Tea program from user specifications to executing statistical tests:

1. Check for completeness and syntax. Tea first checks that a user’s program specifies a

data set, variable declarations, study design description, a set of assumptions, and hypotheses

using the correct syntax. The data set can be empty (with only column names), which may

be useful for pre-registration for instance. If there are any syntax errors or missing parts, Tea

will issue an error and stop execution.

2. Check for consistent, well-formed hypotheses. Using the variable declarations, Tea

then checks that the hypotheses the user states are consistent with variable data types. For

instance, Tea would issue an error and halt execution if a nominal variable was hypothesized

to have a positive relationship with another nominal variable. If the nominal variables have

categories given by numbers (e.g., a variable for education where ‘1’ stands for ‘High School’,

‘2’ for ‘College’, etc. ), a linear relationship would be possible to compute by treating the

categories as raw continuous values. However, treating the numbers as values is incorrect

and the results misleading because the numbers represent discrete categories, not continuous

values. Tea avoids such mistakes.
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3. Inspect data properties and infer valid statistical tests. Once Tea’s compiler verifies

that a Tea program is complete, syntactically correct, and consistent, Tea’s runtime sys-

tem inspects the data to verify properties about it and find a set of valid statistical tests. The

higher-level Tea program is then compiled to logical constraints, which is further discussed

in Subsection 3.4.2.

3.4.1 Tea’s Domain-Specific Language

Tea is a DSL embedded in Python, implemented as a Python library3. It takes advantage of

existing Python data structures (e.g., classes, dictionaries, and enums). We chose Python because

of its widespread adoption in data science.

A key challenge in designing Tea’s DSL is determining the level of granularity necessary to

produce an accurate analysis. In Tea programs, users describe their studies in five ways: (1)

providing a data set, (2) describing the variables of interest in that dataset, (3) specifying their

study design, (4) stating their assumptions about the variables, and (5) formulating hypotheses

about the relationships between variables. Figure 3.1 shows an an example Tea program and its

output.

Data

Data is required for executing statistical analyses. One challenge in managing data for analysis is

minimizing both duplicated data and user intervention.

To reduce the need for user intervention for data manipulation, Tea requires the data to be

a CSV in long format. CSVs are a common output format for data storage and cleaning tools.

Long format (sometimes called “tidy data” [W+14]) is a denormalized format that is widely used

for collecting and storing data, especially for within-subjects studies.

Unlike R and Python libraries such as numpy [Oli06], Tea only requires one instance of the data.

Users do not have to duplicate the data or subsets of it for analyses that require the data to be

in slightly different forms. Minimizing data duplication or segmentation is also important to avoid

user confusion about where some data exist or which subsets of data pertain to specific statistical

tests.

Optionally, users can also indicate a column in the dataset that acts as a relational (or primary)

key, or an attribute that uniquely identifies rows of data. For example, this key could be a participant

identification number in a behavioral experiment. A key is useful for verifying a study design,

described below. Without a key, Tea’s default is that all rows in the data set comprise independent

observations (that is, all variables are between subjects).
3Tea is open-source and available for download on pip, a common Python package manager.
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To use Tea for pre-registration prior to collecting data, a CSV with only column names is

necessary.

Variables

Variables represent columns of interest in the data set. Variables have a name, a data type (nominal,

ordinal, interval, or ratio), and, when appropriate, valid categories. Users (naturally) refer to

variables through a Tea program using their names. Only nominal and ordinal variables have a list

of possible categories. For ordinal variables, the categories are also ordered from left to right.

Variables encapsulate queries. The queries represent the index of the variable’s column in the

original data set and any filtering operations applied to the variable. For instance, it is common to

filter by category for nominal variables.

Study Design

Three aspects of study design are important for conducting statistical analyses: (1) the type of study

(observational study vs. randomized experiment), (2) the independent and dependent variables, and

(3) the number of observations per participant (e.g., between-subjects variables vs. within-subjects

variables).

For semantic precision, Tea uses different terms for independent and dependent variables for ob-

servational studies and experiments. In experiments, variables are described as either “independent”

or “dependent” variables. In observational studies, variables are either “contributor” (independent)

or “outcome” (dependent) variables.

Assumptions

Users’ assumptions based on domain knowledge are critical for conducting and contextualizing

studies and analyses. Often, users’ assumptions are particular to variables and specific properties

(e.g., equal variances across different groups). Current tools generally do not require that users

encode these assumptions, leaving them implicit.

Tea takes the opposite approach to contextualize and increase the transparency of analyses. It

requires that users be explicit about assumptions and statistical properties pertaining to the analysis

as a whole (e.g., acceptable Type I error rate/significance threshold) and the data.

Tea supports two modes for treating user assumptions: strict and relaxed. In both modes, Tea

verifies all user assumptions and issues warnings for assumptions that statistical testing does not

verify. In the strict mode, Tea overrides user assumptions when selecting valid statistical tests. In

the relaxed mode, Tea defers to user assumptions and proceeds as if the assumptions verified even
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if they did not. The strict mode is the default, but users can specify the relaxed mode. Figure 3.1

shows the two modes and the different warnings and output they generate.

If users also know that a data transformation (i.e., log transformation) applies to a variable,

they can express this as an assumption. Data transformations are not properties to be verified but

rather treatments of data that are applied during assumption verification, statistical test selection,

and test execution, which is why they are included in the assumptions clause. The next section

discusses the verification process for assumptions in greater detail.

Figure 3.1: Tea program and its mode-dependent executions.
a) Tea program that aims to determine if two contributor variables, ‘Illiteracy‘ and ‘HS Grad’ that may
predict a third outcome variable ‘Life Exp’, are correlated. The user asserts that ‘Illiteracy’ is normally
distributed. b) By default, Tea executes programs in the strict mode. c) Warning that Tea disagrees with
the user and will override the user’s assertion that ‘Illiteracy’ is normally distributed in the strict mode. d)
Results without the parametric test since Tea overrides user’s assertion. e) A single line change can modify
Tea to execute a program in relaxed mode. f) Warning that Tea cannot verify normality for ‘Illiteracy’ but
will defer to user’s assertion. g) Results with the parametric test since Tea proceeds as if ‘Illiteracy’ was
normally distributed.
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Hypotheses

Hypotheses drive the statistical analysis process. Users often have hypotheses that are technically

alternative hypotheses.

Tea focuses on capturing users’ alternative hypotheses about the relationship between two or

more variables. Tea uses the alternate hypothesis to conduct either a two-sided or one-sided statis-

tical test. By default, Tea uses the null hypothesis that there is no relationship between variables.

3.4.2 Tea’s Constraint-based Runtime System

Tea compiles programs into logical constraints about the data and variables, which it resolves using

a constraint solver. A significant benefit of using a constraint solver is extensibility. Adding new

statistical tests does not require modifying the core of Tea’s runtime system. Instead, defining a

new test requires expressing a single new logical relationship between a test and its preconditions.

At runtime, Tea invokes a solver that operates on the logical constraints it computes to produce

a list of valid statistical tests to conduct. This process presents three key technical challenges: (1)

incorporating statistical knowledge as constraints, (2) expressing user assumptions as constraints,

and (3) recursively selecting statistical tests to verify preconditions of other statistical tests.

SMT Solver

As its constraint solver, Tea uses Z3 [DMB08], a Satisfiability Modulo Theory (SMT) solver.

Satisfiability is the process of finding an assignment to variables that makes a logical formula

true. For example, given the logical rules 0 < x < 100 and y < x, {x = 1, y = 0}, {x = 10, y =

5}, and {x = 99, y = −100} would all be valid assignments that satisfy the rules. SMT solvers

determine the satisfiability of logical formulas, which can encode boolean, integer, real number, and

uninterpreted function constraints over variables. SMT solvers can also be used to encode constraint

systems, as we use them here. A wide variety of applications ranging from the synthesis of novel

interface designs [SKF18], the verification of website accessibility [PGE+18], and the synthesis of

data structures [LTE16] employ SMT solvers.

Logical Encodings

The first challenge of framing statistical test selection as a constraint satisfaction problem is defining

a logical formulation of statistical knowledge.

Tea encodes the applicability of a statistical test based on its preconditions. A statistical test

is applicable if and only if all of its preconditions (which are properties about variables) hold.
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We derived preconditions for tests from an online HCI and statistics course [KW19], a statistics

textbook [FMF12], and publicly available data science resources from universities [Bru19; Lib19].

Tea represents each precondition for a statistical test as an uninterpreted function representing

a property over one or more variables. Each property is assigned true if the property holds for the

variable/s; similarly, if the property does not hold, the property function is assigned false.

Tea also encodes statistical knowledge about variable types and properties that are essential to

statistical analysis as axioms, such as the constraint that only a continuous variable can be normally

distributed.

Algorithm

Tea frames the problem of finding a set of valid statistical tests as a maximum satisfiability

(MaxSAT) problem that is seeded with user assumptions.

First, Tea translates each user assumption about a data property into an axiom about a prop-

erty and variable. As described in Section 3.4.1, user assumptions about properties but not data

transformations are always checked. In the strict mode, Tea overrides any user assumptions it does

not find to hold, creating an axiom that a property is false. In the relaxed mode, Tea defers to

user assumptions, creating axioms that a property is true. For any user assumptions that do not

pass statistical testing, Tea warns the user and explains how it will proceed depending on the mode.

Then, for each new statistical test Tea tries to satisfy, Tea checks to see if each precondition

holds. For each precondition checked, Tea adds the property and variable checked as an axiom

to observe as future tests are checked. If any property violates the axioms derived from users’

assumptions, the property is removed and the test is invalidated. Users’ assumptions always take

precedence.

The constraint solver then prunes the search space. Tea does not compute all properties for all

variables, a significant optimization when analyzing very large data sets.

At the end of this process, Tea finds a set of valid statistical tests to execute. If this set is empty,

Tea defaults to its implementation of bootstrapping [Efr92]. Otherwise, Tea proceeds and executes

all valid statistical tests. Tea returns a table of results to users, applying multiple comparison

corrections [Hol79] and calculating effect sizes when appropriate.

Optimization: Recursive Queries

When Tea verifies a property holds for a variable, it often must invoke another statistical test.

For example, to check that two groups have equal variance, Tea must execute Levene’s test. The

statistical test used for verification may then itself have a precondition, such as a minimum sample

size.
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Such recursive queries are inefficient for SMT solvers like Z3 to reason about. To eliminate

recursion, Tea lifts some statistical tests to properties. For instance, Tea does not encode the

Levene’s test as a statistical test. Instead, Tea encodes the property of having equal variance

between groups and executes the Levene’s test for two groups when verifying that property for

particular variables.

User Output

The result of running a Tea program with data is a listing of the results of executing valid statistical

tests, as shown in Figure 3.1. For each valid statistical test executed, the output contains the

properties of data that Tea checked and used to determine that a statistical test applied, the test

statistic value, p-value (and an adjusted p-value, if applicable), effect sizes (Cohen’s d [Coh88] and

Vargha Delaney A12 [VD00]), the alpha level the user specified in their program, the precise null

hypothesis the statistical test examined, an interpretation of the results in APA format [A+83], and

text recommending users to focus on effect size rather than the p-value for a holistic view of their

data. This output is intended to inform users of why Tea selected specific statistical tests and how

to interpret their results.

3.5 Evaluation

We assessed the validity of Tea in two ways. First, we compared Tea’s suggestions of statistical

tests to suggestions in textbook tutorials. We use these tutorials as a proxy for expert test selection.

Second, for each tutorial, we compared the analysis results of the test(s) suggested by Tea to those

of the test suggested in the textbook as well as all other candidate tests. We use the set of all

candidate tests as as a proxy for non-expert test selection.

We differentiate between candidate and valid tests. A candidate test can be computed on the

data, when ignoring any preconditions regarding the data types or distributions. A valid test is a

candidate test for which all preconditions are satisfied.

3.5.1 How does Tea compare to textbook tutorials?

Our goal was to compare Tea to expert recommendations.

We sampled 12 data sets and examples from R tutorials ([Kab11] and [FMF12]). These included

eight parametric tests, four non-parametric tests, and one Chi-square test. We chose these tutorials

because they appeared in two of the top 20 statistical textbooks on Amazon and had publicly

available data sets, which did not require extensive data wrangling.
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Table 3.2: Results of applying Tea to 12 textbook tutorials.

Tea is comparable to an expert selecting statistical tests. Tea can prevent false positive and false negative results
by suggesting only tests that satisfy all assumptions. Tutorial gives the test described in the textbook; Candidate
tests (p-value) gives all tests a user could run on the provided data with corresponding p-values; Assumptions gives
all satisfied (lightly shaded) and violated (white) assumptions; Tea suggests indicates which tests Tea suggests based
on their preconditions (assumptions about the data). Emphasized p-values indicate instances where a candidate
test leads to a wrong conclusion about statistical significance. Although this table focuses on p-values, Tea produces
richer output that provides a more holistic view of the statistical analysis results by including effect sizes, for instance.
Refer to Figure 3.1 for an example of output from a Tea program.
Tutorial Candidate tests (p-value) Assumptions* Tea suggests

Pearson Pearson’s r (6.96925e-06) 2 4 5 —
[Kab11] Kendall’s τ (2.04198e-05) 2 4 X

Spearman’s ρ (2.83575e-05) 2 4 X

Spearman’s ρ Spearman’s ρ (.00172) 2 4 X
[FMF12] Pearson’s r (.01115) 2 4 —

Kendall’s τ (.00126) 2 4 X

Kendall’s τ Kendall’s τ (.00126) 2 4 X
[FMF12] Pearson’s r (.01115) 2 4 —

Spearman’s ρ (.00172) 2 4 X

Pointbiserial Pointbiserial (Pearson’s r) (.00287) 2 4 5 —
[FMF12] Spearman’s ρ (.00477) 2 4 —

Kendall’s τ (.00574) 2 4 —
Bootstrap (<0.05) X

Student’s t-test Student’s t-test (.00012) 2 4 5 6 7 8 X
[Kab11] Mann-Whitney U (9.27319e-05) 2 4 7 8 X

Welch’s t-test (.00065) 2 4 5 7 8 X

Paired t-test Paired t-test (.03098) 2 4 5 7 8 X
[FMF12] Student’s t-test (.10684) 2 4 5 7 —

Mann-Whitney U (.06861) 2 4 7 —
Wilcoxon signed rank (.04586) 2 4 7 8 X
Welch’s t-test (.10724) 2 7 —

Wilcoxon signed rank Wilcoxon signed rank (.04657) 2 4 7 8 X
[FMF12] Student’s t-test (.02690) 2 4 7 —

Paired t-test (.01488) 2 4 5 7 8 —
Mann-Whitney U (.00560) 2 4 7 —
Welch’s t-test (.03572) 2 4 7 —

F-test F-test (9.81852e-13) 2 4 5 6 9 X
[FMF12] Kruskal Wallis (2.23813e-07) 2 4 9 X

Friedman (8.66714e-07) 2 7 —
Factorial ANOVA (9.81852e-13) 2 4 5 6 9 X

Kruskal Wallis Kruskal Wallis (.03419) 2 4 9 X
[FMF12] F-test (.05578) 2 4 5 9 —

Friedman (3.02610e-08) 2 7 —
Factorial ANOVA (.05578) 2 4 5 9 —

Repeated measures one
way ANOVA

Repeated measures one way ANOVA (.0000) 2 4 5 6 7 9 X

[FMF12] Kruskal Wallis (4.51825e-06) 2 4 7 9 —
F-test (1.24278e-07) 2 4 5 6 7 9 —
Friedman (5.23589e-11) 2 4 7 9 X
Factorial ANOVA (1.24278e-07) 2 4 5 6 9 X

Two-way ANOVA Two-way ANOVA (3.70282e-17) 2 4 5 9 —
[FMF12] Bootstrap (<0.05) X

Chi Square Chi Square (4.76743e-07) 2 4 9 X
[FMF12] Fisher’s Exact (4.76743e-07) 2 4 9 X

* 1 one variable, 2 two variables, 3 two or more variables, 4 continuous vs. categorical vs. ordinal data,
5 normality, 6 equal variance, 7 dependent vs. independent observations, 8 exactly two groups, 9 two
or more groups
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We translated all analyses into Tea and encoded any assumptions explicitly stated in the tutorial.

Tea selected tests based only on the data and the assumptions expressed in the Tea program. Where

Tea disagreed with the tutorials, either (1) the tutorial authors chose the wrong analyses or (2) the

tutorial authors had implicit assumptions about the data that did not hold up to statistical testing.

For nine out of the 12 tutorials, Tea suggested the same statistical test (see Table 3.2). For three

out of 12 tutorials, which used a parametric test, Tea suggested using a non-parametric alternative

instead. Tea’s recommendation of using a non-parametric test instead of a parametric one did not

change the statistical significance of the result at the .05 level. Tea suggested non-parametric tests

based on the Shapiro-Wilk test for normality. It is possible that tutorial authors visualized the data

to make implicit assumptions about the data, but this practice or conclusion was not made explicit

in the tutorials.

For the two-way ANOVA tutorial from [FMF12], which studied how gender and drug usage of

individuals affected their perception of attractiveness, a precondition of the two-way ANOVA is that

the dependent measure is normally distributed in each category. This precondition was violated.

As a result, Tea defaulted to bootstrapping the means for each group and reported the means and

confidence intervals. For the pointbiserial correlation tutorial from [FMF12], Tea also defaulted to

bootstrap for two reasons. First, the precondition of normality is violated. Second, the data uses a

dichotomous (nominal) variable, which invalidates Spearman’s ρ and Kendall’s τ .

Tea generally agrees with expert recommendations and is more conservative in the presence of

non-normal data, minimizing the risk of false positive findings.

3.5.2 Does Tea avoid common mistakes made by non-expert users?

Our goal was to assess whether any of the tests suggested by Tea (i.e., valid candidate tests) or

any of the invalid candidate tests would lead to a different conclusion than the one drawn in the

tutorial. Table 3.2 shows the results. Specifically, emphasized p-values indicate instances for which

the result of a test differs from the tutorial in terms of statistical significance at the .05 level.

For all of the 12 tutorials, Tea’s suggested tests led to the same conclusion about statistical

significance. For two out of the 12 tutorials, two or more candidate tests led to a different conclusion.

These candidate tests were invalid due to violations of independence or normality.

To summarize, the evaluation shows us that (i) Tea can replicate and even improve upon expert

choices and (ii) Tea could help novices avoid common mistakes and false conclusions.
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3.6 Discussion, Limitations, and Future Work

Our goal with Tea was to determine the feasibility of automating statistical test selection based

on high-level input from analysts. Automating statistical test selection raises important concerns

about the impact of such automation on the reliability of statistical conclusions. In this regard,

there are two chief concerns pertaining to (i) selective inference and (ii) multiple testing, both of

which inflate the Type I Error Rate and can lead to more false discoveries.

Tea relies on statistical tests (e.g., Shapiro-Wilk’s test for normality) to assess properties of data

to determine which statistical tests (e.g., Student’s t-test) are used to assess the input hypothesis.

Repeated property testing of the data is a form of “double-dipping,” or using the data to make

decisions about analyses on the data. Preventing this would be ideal to reduce the false positive

discovery rate [FST14; TT15]. However, the statistics community is still developing techniques to

address this issue. A naive approach would be to only use a sample of the data to determine the final

statistical test and then use another sample to make statistical inferences. While viable for large

datasets, this may not be possible for smaller datasets. A more recently proposed technique, data

fission [LDWR23] overcomes, in theory, this dependence on dataset size. Data fission introduces

noise to the data to make analysis decisions (i.e., statistical test selection) and then stripping the

noise to obtain final results. Tea does not currently implement either of these approaches. In the

future, Tea should incorporate these and future recommendations from the statistics community.

Furthermore, there is an inherent tension between executing multiple statistical tests (e.g.,

Student’s t-test and Welch’s t-test) to show analysts the robustness, or sensitivity, of statistical

results and increasing the number of comparisons performed. In Tea, we believed that providing

analysts with the ability to compare statistical tests, make sensitivity judgments, and report the

results of a test most common in their disciplines was more important than restricting the number

of statistical tests, especially we have observed analysts intentionally run multiple statistical tests

in order to compare results on their own. To more fully support sensitivity analyses and discourage

cherry-picking statistical tests and results, Tea should provide more explicit support for interpreting,

comparing, and contrasting statistical test results in the future. This will be particularly important

in scenarios where statistical tests may disagree with one another. conflicting test conclusions.

Finally, Tea’s test selection is well suited for answering a class of relatively simple research

questions. At the same time, there are more complex research questions that analysts want to ask

about their domain using data that require more complex statistical analyses. These are currently

out of reach for Tea. For instance, domain experts may not want to know that there is a difference

between treatment and control groups but also estimate the influence of the treatment on an outcome

in the presence of other variables that also influence treatment and the outcome. Therefore, in order

to support a larger class of research questions and statistical models, we need to re-consider and
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extent Tea’s abstractions and constraint-based reasoning approach.

3.7 Summary of Contributions

Statistical tests (e.g., Student’s t-test, Chi-Square test, ANOVA) are a common approach for as-

sessing conceptual hypotheses with data. Statistical testing requires analysts to grapple with their

conceptual hypotheses, know a number of tests and when they are applicable (i.e., know the precon-

ditions for when these tests hold), assess the applicability of tests (i.e., check preconditions), and

pick and implement specific tests using low-level APIs.

Tea’s key insight is that we can reformulate statistical test selection as a constraint satisfaction

problem. We designed and implemented a higher-level DSL around this insight that takes an

analyst’s hypothesis and assumptions about their data as input and provides the results of executing

valid statistical tests as output. In an evaluation, we found that Tea avoids faulty test selection

and conclusions that are easy to make using existing tools. In this way, Tea improves statistical

conclusion and internal validity [Sha10].

Tea demonstrates the feasibility and benefit of developing systems that emphasize higher-level

abstractions (Thesis Challenge 1: Explicating domain knowledge) and automated reason-

ing (Thesis Challenge 2: Representation and automated reasoning) for statistical tests.

However, using statistics to answer real-world questions requires going beyond statistical testing

to grappling with statistical modeling and effect estimation. Next, we consider how our approach

generalizes to a larger class of statistical analyses.

This work was done in collaboration with Maureen Daum, Jared Roesch, Sarah E. Chasins,

Emery Berger, René Just, and Katharina Reinecke. It was originally published and presented at

ACM UIST 2019 [JDR+19]. Since publication, multiple people, including most notably Shreyash

Nigam, Reiden Chea, and Annie Denton, have contributed to updating and improving Tea.
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Chapter 4

Hypothesis Formalization: A Conceptual

Framework Characterizing How

Analysts Translate Research Questions

into Statistical Analyses

Consider a census researcher who asks, “In the United States (U.S.), how does an individual’s sex

relate to their annual income?” Drawing upon their prior experiences and exploratory data visual-

izations, the researcher knows that income in the U.S. is skewed, and they want to know how the

distributions of income among males and females differ (step i). However, before implementing, they

(implicitly) define their causal model: The researcher knows that other factors, such as education

and race, may be associated with employment opportunities, which may then influence income. As

such, they refine their conceptual hypothesis–that sex influences income–to consider the possible

effects of race, education, sex, and their interactions on income. They plan to fit a generalized linear

model with race, education, sex, and their two-way interactions as predictors of income (step ii).

They start implementing a script to load and model data (step iii). The researcher receives a small

table of results and is surprised to receive a convergence warning. After further investigation, they

simplify their model and remove the interaction effects to see how that may affect convergence (re-

vise step iii). This time, their model’s inference algorithm converges, and they interpret the results

(step iv), but they really want to study how sex and race interact, so they return to implementation

(step iii) and proceed as before, iteratively removing and adding effects and changing computational

parameters, and as a by-product shifting which high-level conceptual hypothesis is reflected in the

model.
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Performing statistical data analysis goes well beyond invoking the correct statistical functions

in a software library. As seen with the census researcher, statistical analyses require (i) translating

high-level, domain-specific questions and hypotheses into specific statistical questions [CEG+16]; (ii)

identifying statistical models to answer the statistical questions; (iii) implementing and executing

these statistical models, typically with the help of software tools; and (iv) interpreting the results,

considering the domain-specific questions and applying analytical reasoning. Analysts must go

back and forth between conceptual hypothesis and model implementation realities, grappling with

domain knowledge, limitations of data, and statistical methods.

We refer to the process of translating a conceptual hypothesis into a computable statistical

model as hypothesis formalization. This process is messy and under-scrutinized in prior work. Con-

sequently, we investigate the steps, considerations, challenges, and tools involved. Based on our

findings, we define hypothesis formalization as a dual-search process [KD88] that involves develop-

ing and integrating cognitive representations from two different perspectives—conceptual hypotheses

and concrete model implementations. Analysts move back and forth between these two perspec-

tives during formalization while balancing conceptual, data-driven, statistical, and implementation

constraints. Figure 4.1 summarizes our definition and findings. Specifically, this chapter addresses

the following questions to develop our definition of hypothesis formalization:

• RQ1 - Steps: What is the range of steps an analyst might consider when formalizing a

hypothesis? How do these steps compare to ones that we might expect based on prior work?

• RQ2 - Process: How do analysts think about and perform the steps to translate their

hypotheses into model implementations? What challenges do they face during this process?

• RQ3 - Tools: How might current software tools influence hypothesis formalization?

To sensitive ourselves to the steps (RQ1 - Steps) and considerations (RQ2 - Process) involved

in hypothesis formalization, we compared and contrasted existing models and descriptions of data

analysis in prior work. We augmented our deep dive into prior work with a formative content

analysis of 50 randomly sampled research papers from five different venues, including Psychological

Science and Nature. We find that researchers decompose their research hypotheses into specific sub-

hypotheses, derive proxy variables from theory and available data, and adapt statistical analyses to

account for data collection procedures. A key takeaway from prior work and the formative content

analysis was the “hypothesis refinement loop” in Figure 4.1.

To validate and deepen our understanding of hypothesis formalization (RQ1 - Steps and RQ2

- Process), we designed and conducted a lab study in which we observed 24 analysts develop

and formalize hypotheses in-situ. We find that analysts foreground implementation concerns, even

when brainstorming hypotheses, and try to fit their hypotheses and analyses to prior experiences
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Figure 4.1: Definition and overview of the hypothesis formalization steps and process.
Hypothesis formalization is a dual-search process of translating a conceptual hypothesis into a statistical
model implementation. Blue indicates steps and transitions that we identified. Black indicates steps
and transitions discussed in prior work. “Mathematical Equation” (dashed box) was rarely an explicit step
in our lab study but evident in our content analysis. Our findings (blue arrows) corroborate and subsume
several of the transitions identified in prior work with greater granularity. When they do not, prior work’s
transitions are included in black. For example, analysts may operationalize a conceptual hypothesis as a
causal model by first decomposing the conceptual hypothesis into sub-hypotheses and then identifying proxy
variables to incorporate in a causal model (blue arrows above). Our definition of hypothesis formalization is
a consequence of our synthesis of prior work, content analysis, lab study, and analysis of tools. Hypothesis
formalization is a non-linear process. Analysts iterate over conceptual steps to refine their hypothesis in a
hypothesis refinement loop. Analysts also iterate over computational and implementation steps in a model
implementation loop. Data collection and data properties may also prompt conceptual revisions and influence
statistical model implementation. As analysts move toward model implementation, they increasingly rely
on software tools, gain specificity, and create intermediate artifacts along the way (e.g., causal models,
observations about data, etc.).

and familiar tools, suggesting a strong influence of tools (RQ3 - Tools). Thus, the lab study

reinforced the hypothesis refinement loop, surfaced the “model implementation loop,” and raised

questions about the role of tools.

To identify how tools may shape hypothesis formalization (RQ3 - Tools), we reviewed 20

statistical software tools. We find that although the tools support nuanced model implementations,

their low-level abstractions can focus analysts on statistical and computational details at the expense

of higher-level reasoning about initial hypotheses. Tools also do not aid analysts in identifying

reasonable model implementations that would test their conceptual hypotheses, which may explain

why analysts in our lab study relied on familiar approaches, even if sub-optimal. Furthermore, our

tools review confirmed that the dual processes inform one another during hypothesis formalization.
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Taken together, our findings help us define the hypothesis formalization framework, as summa-

rized in Figure 4.1, and suggest three design implications for tools to more directly support

hypothesis formalization: (i) show the relationships between related statistical models that seem

syntactically different from each other, (ii) provide higher-level abstractions for expressing con-

ceptual hypotheses and partial model specifications, and (iii) develop bidirectional computational

assistance for authoring causal models and relating them to statistical models.

By defining and characterizing hypothesis formalization, we situate data analysis in a larger

model of scientific discovery, identify specific problem solving strategies used in hypothesis formal-

ization that demonstrate how data analysis (and science) is a practice, and identify opportunities for

future software to improve the transparency and reproducibility of analyses by explicitly supporting

pathways and loops through hypothesis formalization.

4.1 Background and Related Work

Our work integrates and builds up existing theories of statistical thinking in cognitive psychology

and statistics. We also situate hypothesis formalization in the larger context of scientific discovery.

4.1.1 Statistical Thinking

Statistical thinking and practice require differentiating between domain and statistical questions.

The American Statistical Association (ASA), a professional body representing statisticians, rec-

ommends that universities teach this fundamental principle in introductory courses (see Goal 2

in [CEG+16]). Similarly, researchers Wild and Pfannkuch emphasize the importance of differen-

tiating between and integrating statistical knowledge and context (or domain) knowledge when

thinking statistically [Pfa97; PW+00; WP99]. They propose a four step model for operationalizing

ideas (“inklings”) into plans for collecting data, which are eventually statistically analyzed. In their

model, analysts must transform “inklings” into broad questions and then into precise questions that

are then finally turned into a plan for data collection (see Figure 2 in [WP99]). Statistical and do-

main knowledge inform all four stages. However, it is unknown what kinds of statistical and domain

knowledge are helpful, how they are used and weighed against each other, and when certain kinds

of knowledge are helpful to operationalize inklings. Our work in defining hypothesis formalization

provides more granular insight into Wild and Pfannkuch’s proposed model of operationalization and

aims to answer when, how, and what kinds of statistical and domain knowledge are used during

statistical data analysis.

More recently, in Statistical Rethinking [McE20], McElreath proposes that there are three key

representational phases involved in data analysis: conceptual hypotheses, causal models underly-
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ing hypotheses (which McElreath calls “process models”), and statistical models. McElreath, like

the ASA and Wild and Pfannkuch, separates domain and statistical ideas and discusses the use of

causal models as an intermediate representation to connect the two. McElreath emphasizes that

conceptual hypotheses may correspond to multiple causal and statistical models, and that the same

statistical model may provide evidence for multiple, even contradictory, causal models and hypothe-

ses. McElreath’s framework does not directly address how analysts navigate these relationships or

how computation plays a role, both of which we take up in this chapter.

Overall, our work provides empirical evidence for prior frameworks but also (i) provides more

granular insight into how and why transitions between representations occur and (ii) scrutinizes the

role of software and computation through close observation of analyst workflows in the lab as well as

through a follow-up analysis of statistical software. Based on these observations, we also speculate

on how tools might better support hypothesis formalization.

4.1.2 Statistical Data Analysis as Part of Scientific Discovery

Klahr and Simon characterized scientific discovery as a dual-search process involving the develop-

ment and evaluation of hypotheses and experiments [KD88]. They posited that scientific discovery

involved tasks specific to hypotheses (e.g., revising hypotheses) and to experiments (e.g., analyz-

ing data collected from experiments), which they separated into two different “spaces,” and tasks

moving between them, which is where we place hypothesis formalization. Extending Klahr and

Simon’s two-space model, Schunn and Klahr proposed a more granular four-space model involving

data representation, hypothesis, paradigm, and experiment spaces [SK95; SK96]. In the four-space

model, conceptual hypothesizing still lies in the hypothesis space, and hypothesis testing and statis-

tical modeling lies in the paradigm space. As such, hypothesis formalization is a process connecting

the hypothesis and paradigm spaces. In Schunn and Klahr’s four-space model, information flows

unidirectionally from the hypothesis space to the paradigm space. We extend this prior research

with evidence that the path from hypothesis and paradigm spaces is actually bidirectional (see Fig-

ure 4.1).

Figure 4.2 augments Schunn and Klahr’s original diagram (Figure 1 in [SK95]) with annotations

depicting how our content analysis of research papers and lab study triangulate a tighter dual-space

search between hypothesis and paradigm spaces with a focus on hypothesis formalization. Our

mixed-methods approach follows the precedent and recommendations of Klahr and Simon’s [KS99]

study of scientific discovery activities.
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Figure 4.2: Relationship between hypothesis formalization and prior work.
Left: Schunn and Klahr’s four-space model of scientific discovery (stylized adaptation from Figure 1
in [SK95]), which includes unidirectional information flow from the hypothesis space to the paradigm space
(which includes model implementation). Hypothesis formalization (A) is focused on a tighter integration
and the information flow between hypothesis and paradigm spaces. Specifically, the information flow is
bidirectional in hypothesis formalization. Our content analysis (B) and lab study (C) triangulate the four-
space model to understand hypothesis formalization from complementary perspectives. Right: Hypothesis
formalization steps also identified in prior work on theories of sensemaking, statistical thinking, and data
analysis workflows (citations included to the right of the arrows). Hypothesis formalization is finer grained
and involves more iterations. While prior work broadly refers to mathematical equations, partial model
specifications, and computationally tuned model implementations as statistical specifications, hypothesis
formalization differentiates them. As a whole, this chapter provides empirical evidence for theorized loops
between conceptual hypothesis and statistical specification (see Figure 4.1).

4.2 Formative Content Analysis

To complement our in-depth synthesis of prior work, we conducted a formative content analysis of

50 peer-reviewed publications from five different domains.

Methods

We randomly sampled ten papers published in 2019 from each of the following venues: (1) the

Proceedings of the National Academy of Sciences (PNAS), (2) Nature, (3) Psychological Science

(PS), (4) Journal of Financial Economics (JFE), and (5) the ACM Conference on Human Factors

in Computing Systems (CHI). We sampled papers that used statistical analyses as either primary

or secondary methodologies. Our sample represents a plurality of domains and recent practices. 1

The first two authors iteratively developed a codebook to code papers at the paragraph-level.

The codebook contained five broad categories: (i) research goals, (ii) data sample information, (iii)

statistical analysis, (iv) results reporting, and (v) computation. Each category had more specific

codes to capture more nuanced differences between papers. This tiered coding scheme enabled us to

see general content patterns across papers and nuanced steps within papers. The first two authors
1Google Scholar listed the venues among the top three in their respective areas in 2018. Venues were often clustered

in the rankings without an obvious top-one, so we chose among the top three based on ease of access to publications
(e.g., open access or access through our institution). Some papers were accepted and published before 2019, but the
journals had included them in 2019 issues.
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Figure 4.3: Example reorderable matrix for Ngo et al.’s “Development of holistic
episodic recollection” published in Psychological Science (2019) [NHNO19] from the
formative content analysis.
We visualized each paper in our sample as a “reorderable matrix” [Ber11] to aid in detecting patterns in
papers’ structure and content that could indicate how researchers formalized their hypotheses. The rows
represent the codes in our codebook, colored according to the five broad categories of codes: research
goals (rows 1-5, green), sample information (rows 6-9, orange), statistical analysis details (rows 10-12, red),
reporting of results (rows 13-18, blue), and computational details (rows 19-20, bright yellow). The columns
are the paragraphs, which are indexed by their first sentences, ordered left to right. In a paragraph’s column,
there is an “X” for each code the paragraph received. Paragraphs have multiple codes if they contain multiple
types of information. Among the ten visual patterns we noticed across our sample and subsequently looked
for in each paper, two stand out in this paper. (A) As the paper progresses (visually moving left to right), the
paper’s focus shifts from research goals to sample information to statistical analysis to results, as indicated
by the arrow labeled A. Largely expected, this pattern helps to validate our coding method. Also, there is
only one paragraph that discusses statistical software. (B) Researchers discuss research goals and questions
throughout the paper. Interestingly, in the middle of the paper, when the researchers discuss their goals
in greater detail, the researchers discuss them in increasing specificity, as indicated by the arrow labeled
B. We were able to detect this pattern across papers by iterating on how to order the research goal codes
(rows 1-5, green). The final order lists codes in increasing specificity from top (row 1) to bottom (row
5). Pattern B suggests that researchers refine their hypotheses during hypothesis formalization, which may
involve specifying proxies and statistical methods. Appendix A discusses additional patterns in this paper
and across our entire sample.

reached substantial agreement (IRR = .69 - .72) even before resolving disagreements. The first

three authors then (i) read and coded all sections of papers except the figures, tables, and auxiliary

materials that did not pertain to methodology2; (ii) discussed and summarized the papers’ goals

and main findings to ensure comprehension and identify contribution types; and (iii) visualized each

paper as a “reorderable matrix” [Ber11].

We adapted Bertin’s “reorderable matrix” [Ber11], an interactive visualization technique for data

exploration, in our analysis. We visualized each paper in our sample as a matrix where each row

represented a code in our codebook and each column represented a coded paragraph. We fixed the
2PNAS and Nature papers included a materials and methods section after references that were distinct from

extended tables, figures, and other auxiliary material. We coded the materials and methods sections in the appendices
and included them in the content analysis. Section A.2 describes our process in greater detail.
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order of paragraphs to match the paper’s progression. We colored codes (rows) according to their

categories in our codebook, repeatedly reordered the rows representing codes, and transposed the

matrices to detect visual patterns in the papers. Figure 4.3 shows an example matrix.

The visual representation of papers’ content and structure helped us notice common patterns

across papers and guided our follow-up analyses and discussions about what steps (RQ1 - Steps)

and considerations (RQ2 - Process) researchers reported having during hypothesis formalization.

Across multiple papers, the matrices showed how researchers typically start with broader research

goals that they decompose into specific hypotheses (i.e., hypothesis refinement) over the course of

a paper section, for example. Within a single paper, the matrices visually showed patterns of how

researchers motivated and pieced together multiple experiments and interpreted statistical results

in order to make a primary scientific argument. Appendix A includes our codebook with definitions

and examples as well as a summary, citation, and annotated matrix for each paper.

Findings

Overview: We coded a total of 2,989 paragraphs across 50 papers. Results were the most commonly

discussed topic. Approximately 31% of the paragraphs (in 50 papers) discussed interpretations of

statistical results, and 11% (in 37 papers) provided details about statistical results (e.g., parameter

estimates). Interpreted results often co-occurred with statistical results. 21% of paragraphs (in

40 papers) described data collection design (e.g., how the experiment was designed, how the data

were collected, etc.). Specifications of statistical models appeared in 19% of paragraphs (in 50

papers). 11% of paragraphs (in 45 papers) discussed proxy variables, or measures to quantify

abstract constructs (e.g., music enjoyment). To our surprise, more papers mentioned software than

included equations. Researchers mentioned software used for statistical analysis in 3% of paragraphs

(in 25 papers), sometimes even specifying function names and parameters, a level of detail we did not

expect to find in publications. Only fifteen papers (JFE: 9, PS: 5, PNAS: 1) included equations in

a total of 71 paragraphs. This suggests that mathematical equations, though part of the hypothesis

formalization process, are less important to researchers than their tool-specific implementations.

We present more comprehensive tables and findings about paper structure, about paper contri-

butions and venue differences in Appendix A.

Researchers deconstruct hypotheses into sub-goals that correspond to statistical anal-

yses.

In approximately 70% of papers in the corpus, we found that researchers deconstructed their mo-

tivating research questions and overarching hypotheses into more tightly scoped objectives or re-

lationships of interest that map to specific statistical analyses. For example, in [CDdME19], the
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researchers asked how theories of macroevolution varied across groups of species. The authors di-

vided pre-existing hypotheses into three classes of hypotheses and assessed each class in turn. For

one class of “geometric” hypotheses about insect egg size, the researchers discriminated between

two opposing hypotheses by examining “the scaling exponent of length and width (the slope of the

regression of log-transformed length and log-transformed width).” As this example demonstrates,

hypothesis formalization involves an iterative hypothesis refinement process at the conceptual level.

This refinement process distills hierarchies of hypotheses and/or a single conceptual hypothesis

into sub-hypotheses and formalizes these sub-hypotheses in statistical model implementations. Re-

searchers also relate sub-hypotheses to one other during this process, which implies their causal

models about the motivating conceptual hypothesis (and domain).

Researchers concretize hypotheses using proxies that are based on theory or available

data.

Proxy variables further refine conceptual hypotheses by identifying how observable some concepts

are, measuring the observable ones, indirectly measuring the less observable ones, and comparing

measurement choices to other possible measures or ideal scenarios. As such, proxy variable se-

lection is an important transition step between conceptual and data concerns during hypothesis

formalization.

When defining proxy variables, researchers (i) used previously validated measures when available

for theoretical and methodological soundness, such as the Barcelona Music Reward Questionnaire

(BMRQ) to measure music reward (in [HAPGNN+19]), or (ii) developed new measures as a re-

search contribution. For example, in [GAL+19], the authors develop an EEG-based measure for

“immersiveness” in VR they demonstrated to be superior to previous measures that required halt-

ing immersive VR experiences to ask users about immersion. Researchers also sometimes justified

choosing proxies based on available data. For example, in [GKM19], the researchers wanted to

develop a proxy variable for job rank based on titles and “financial outcomes” (e.g., compensation,

bonuses, etc.) to see if housing bankers were promoted or demoted after the 2008 stock market

crash. However, because the financial outcomes were not public, the researchers relied on title only

to compare bankers’ ranks, which was sub-optimal because job titles differ between companies.

Researchers consider their proxy choices as study limitations and consider alternative proxies

to ensure that their findings are robust. Validating findings with multiple proxies suggests that

hypothesis formalization can be a recursive process. Proxies lead to follow-up hypotheses about

possible latent measurement factors, for instance, which in turn lead to additional analyses that

address the same conceptual hypothesis.
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Data collection and sampling influence statistical analysis.

Researchers often described their data sampling and study design as factors that necessitated addi-

tional steps in their analysis process. In [BLT+19] and [PAH+19], researchers accounted for effects

of task order in their study protocol by running additional regressions or analyzing tasks separately.

Researchers also ran initial analyses to assess the effect of possibly confounding variables in their

study design, such as gender in [CLD+19] or location of stimuli in [TPO+19]. Other times, re-

searchers performed robustness checks after their main analyses, such as in response to a gender

imbalance in [PAH+19] and possible sample selection biases due to database constraints in [HHZ19].

Although data collection driven by statistical modeling plans was expected of replication studies

(e.g., [ZTDB19; PAH+19; BLT+19]) or papers that make methodological contributions (e.g., [CCM19a;

CCM19b]), we found an instance in [BSCN19]—neither replication nor methodological contribu-

tion—where researchers explicitly reported selecting a statistical model before designing their study.

The researchers chose to use a well-validated computational model, the linear ballistic accumulator

(LBA), to quantify aspects of human decision making. This model selection influenced the way

they designed their study protocol so that they could obtain a sample large enough for accurate

parameter estimation.

Based on these observations, it seems that modeling choices more frequently react to data

collection processes and possible sample biases, following a linear data collection-first process implied

by prior work. However, there are also instances where model implementation comes first and

researchers’ data collection procedures must adhere to modeling needs, suggesting a previously

missing loop between statistical model implementation and data collection that is separate from any

influences conceptual hypotheses have on data collection.

4.2.1 Discussion

The content analysis confirmed prior findings on (i) the connection between hypotheses and causal

models (e.g.,[McE20]), (ii) the importance of proxies to quantify concepts, and (iii) the constraints

that data collection design and logistics place on modeling. Extending prior work, the content

analysis also (i) suggested that decomposing hypotheses into specific objectives is a mechanism by

which conceptual hypotheses relate to causal models; (ii) crystallized the hypothesis refinement loop

involving conceptual hypotheses, causal models and proxies; and (iii) surfaced the dual-search nature

of hypothesis formalization by suggesting that model implementation may shape data collection.

The content analysis also raised questions about how much the pressures to write compelling

scientific narratives [Ker98] influence which aspects of hypothesis formalization are described or

omitted (e.g., in practice, model implementations may constrain data collection more often than
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we found in our dataset), how the steps are portrayed linearly even though the process may have

been more iterative, how analysts determine which tools to use, and how analysts without domain

expertise may approach hypothesis formalization differently. These questions motivated us to design

and conduct a lab study to provide greater visibility into how analysts who are not necessarily

researchers approach the process with expectations of rigor but without pressure of publication.

Limitations

The major limitation of analyzing published papers is the disconnect between actual and reported

analytical practice. The pressures to write compelling scientific narratives [Ker98] likely influence

which aspects of hypothesis formalization are described or omitted. For instance, in practice,

model implementations may constrain data collection more often than we found in our sample.

Nevertheless, the lack of information in prior work and the content analysis suggests that hypothesis

formalization remains an opaque process deserving of greater scrutiny. Hypothesis formalization

may explain how analysts determine which tools to use and how domain expertise may influence

the analytical conclusions reached.

4.2.2 Takeaways: Expected Steps in Hypothesis Formalization

Towards our first two research questions about what actions analysts take to formalize hypotheses

(RQ1 - Steps) and why (RQ2 - Process), prior work and our formative content analysis suggest

that hypothesis formalization involves steps in three categories: conceptual, data-based, and statis-

tical. Conceptually, analysts develop conceptual hypotheses and causal models about their domain

that guide their data analysis. With respect to data, analysts explore data and incorporate insights

from exploration, which can be top-down or bottom-up, into their process of formalizing hypotheses.

The statistical concerns analysts must address involve mathematical and computational concerns,

such as identifying a statistical approach (e.g., linear modeling), representing the problem mathe-

matically (e.g., writing out a linear model equation), and then implementing those using software.

In our work, we find evidence to support separating statistical considerations into concerns about

mathematics, statistical specification in tools, and model implementation using tools.

A key observation about prior work is that there is a tension between iterative and linear work-

flows during hypothesis formalization. Although sensemaking processes involve iteration, concerns

about methodological soundness, as evidenced in pre-registration efforts that require researchers

to specify and follow their steps without deviation, advocate for, or even impose, more linear

processes. More specifically, theories of sensemaking that draw on cognitive science, in particu-

lar [RSPC93; GW14], propose larger iteration loops between conceptual and statistical considera-

tions. Some textbooks and research concerning statistical thinking and practices [WP99; CEG+16]
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appear less committed to iteration while other researchers and practitioners in applied statistics

emphasize workflows for iterating on statistical models [YK20; LCD+19a; GCS+13]. Workflows

(e.g., model expansion) can help researchers start with simple models and build up to more com-

plex ones by incrementally testing and refining their understanding of characteristics of the data,

the model fitting algorithms, and computational settings [Bet20; GVS+20a; GSV+19]. Moreover,

empirical work in HCI on data analysis embraces iteration during exploration and observes itera-

tion during some phases of confirmatory data analysis, such as statistical model choice, but not in

others, such as tool selection. In our work, we are sensitive to this tension and aim to provide more

granular insight into iterations and linear processes involved in hypothesis formalization. We also

anticipate that the steps identified in prior work will recur in our lab study, but we do not limit our

investigation to these steps.

4.3 Exploratory Lab Study

To address the limitation of the content analysis, understand analysts’ considerations (RQ2 -

Process) while formalizing their hypotheses (RQ1 - Steps), and examine the role of statistical

software in this process (RQ3 - Tools), we designed and conducted a virtual lab study with freelance

data workers who approach the hypothesis formalization and analysis process with expectations of

rigor but without the pressure of publication.

4.3.1 Methods

Data workers: We recruited 24 data workers with experience in domains ranging from marketing

to physics to education through Upwork (22) and by word of mouth (2).3

Twelve data workers held occupations as scientists, freelance data scientists, project managers,

or software engineers. Six were currently enrolled in or had just finished graduate programs that

involved data analysis. Five identified as current or recent undergraduates looking for jobs in

data science. One was an educator. Data workers self-reported having significant experience on

a 10-point scale adapted from a scale for programming experience [FKL+12] (min=2, max=10,

mean=6.4, std=2.04) and would presumably have familiarity with hypothesis formalization.

The lab study enables us to contrast normative expert practices (found in prior work and our

formative content analysis) to observed practices with data workers who are not statistical experts

but still work in real-world analysis settings (i.e., research, marketing, consulting). A benefit of

studying these data workers is that they are likely to benefit most from new tools.

3We refer to our participants as data workers because they work with data but do not represent the entire
population of data scientists, which may include statistical experts.
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Protocol: We designed and conducted a lab study with three parts. Parts 1 and 3 were recorded

and automatically transcribed using Zoom. We compensated data workers $45 for their time. The

first author conducted the study and took notes throughout.

Part 1: Structured Tasks. Part 1 asked data workers to imagine they were leading a research

team to answer the following research question: “What aspects of an individual’s background and

demographics are associated with income after they have graduated from high school?”4 We asked

data workers to complete the following tasks:

• Task 1: Hypothesis generation. Imagining they had access to any kind of data thinkable, data

workers brainstormed at least three hypotheses related to the research question.

• Task 2: Conceptual modeling. Next, data workers saw a sample data schema and developed a

conceptual model for one or more of their hypotheses. We used the term “conceptual model”

instead of “causal model” to avoid (mis)leading data workers. We provided the following

definition: “A conceptual model summarizes the process by which some outcome occurs. A

conceptual model specifies the factors you think influence an outcome, what factors you think

do not influence an outcome, and how those factors might interact to give rise to the outcome.”

• Task 3: Statistical model specification. Finally, we presented data workers with a sample

dataset and instructed them to specify but not implement a statistical model to test one or

more of their hypotheses.

After the three tasks, we conducted a semi-structured interview with data workers about (i)

their validity concerns5 and (ii) experiences. To help us contextualize our observations and assess

the generalizability of our findings, we asked data workers to compare the study’s structure and

tasks to their day-to-day data analysis practices.

Part 2: Take-home analysis. After the first Zoom session, data workers implemented their

analyses using the previously shown dataset, shared any analysis artifacts (e.g., scripts, output,

visualizations, etc.), and completed a survey about their implementation experience. Prior to Part

3, the first author reviewed all submitted materials and developed participant-specific questions for

the final interview.

Part 3: Final Interview. The first author asked data workers to give an overview of their analysis

process and describe the hypotheses they tested, how their analysis impacted their conceptual model

and understanding, why they made certain implementation choices, what challenges they faced (if

any), and any additional concerns about validity.
4We chose the open-ended research question about income after high school because we expected it to be widely

approachable and require no domain expertise to understand.
5If data workers were unfamiliar with the term “validity,” we rephrased the questions to be about “soundness” or

“reliability.”
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Materials: The data schema and dataset used in the study came from a publicly available dataset

from the Pew Research Center [Suh14]. Each task was presented in a separate document. All study

materials are included in Appendix B.

Analysis: The first author reviewed the data workers’ artifacts multiple times to analyze their con-

tent and structure; thematically analyzed notes and transcripts from data workers’ Zoom sessions;

and regularly discussed observations with the other authors throughout analysis.

4.3.2 Findings and Discussion

Eighteen of the 24 data workers we recruited completed all three parts of the study. The other six

data workers completed only the first Zoom session. In our analysis, we incorporate data from all

data workers for as far as they completed the study.

We found that data workers had four major steps (RQ1 - Steps) and considerations (RQ2 -

Process): (i) identifying or creating proxies, (ii) fitting their present analysis to familiar approaches,

(iii) using their tools to specify models (RQ3 - Tools), and (iv) minimizing bias by relying on data.

Data workers also faced challenges acquiring and incorporating domain and statistical knowledge

(RQ2 - Process).

Data workers consider proxies and data collection while articulating hypotheses.

We encouraged data workers to not consider the feasibility of collecting data while brainstorming

hypotheses. Yet, while brainstorming hypotheses, data workers expressed concern with how to

measure constructs [D2, D5, D8, D12, D18, D22, D24] and how to obtain data [D2, D6, D8, D9,

D11, D21, D24].

For instance, D18, a computer science student who had worked on more than five data analysis

projects, grappled with the idea of ‘privilege’ and how to best quantify it:

“I’m trying to highlight the fact that those who will be privileged before graduation...that

experience will enable them to make again more money after graduation. I won’t say

‘privilege’ because we need to quantify and qualify for that...it’s just an abstract term.”

Eventually, D18 wrote two separate hypotheses about ‘privilege,’ operationalizing it as parental

income: (1) “People with higher incomes pre graduating, end up having higher differences between

pre and post graduation incomes than those with lower incomes pre graduation.” and (2) “People

with parents with lower incomes tend to have lower incomes pre graduation than those with parents

with higher incomes.”

D18 continued to deliberate ‘privilege’ as measured by low and high income, saying, “...again you

need to be careful with low and high because these are just abstract terms. We need to quantify that.
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What does it mean to be ‘low?’ What does it mean to be ‘high?’ ”. Finally, D18 decided to “maybe

use the American standards for low income and high income.” Although an accepted “American

standard” may not exist, D18 nevertheless believed that cultural context was necessary to specify

because it could provide a normalizing scale to compare income during analysis, demonstrating how

data workers plan ahead for statistical modeling while brainstorming and refining hypotheses.

Similarly, D2, a freelance data scientist, was very specific about how to measure personality:

“More extraverted individuals (extraversion measured using the corresponding social network graph)

are likely to achieve higher yearly income later in life.”

In the presence of the data schema, more data workers were concerned with proxies [D2, D5, D6,

D7, D8, D9, D16, D18, D21]. Some even adapted their working definitions to match the available

data, similar to how researchers in the content analysis determined proxies based on data. For

instance, D8, who hypothesized that “individuals interested in STEM fields tend to earn more post

high school than individuals interested in other fields,” operationalized “interest” as “Major” — a

variable included in the data schema — even though they had previously brainstormed using other

proxies such as club attendance in high school.

These data workers’ closely related considerations of data and concept measurement demonstrate

how conceptual hypotheses and data collection may inform each other, corroborating our findings

from the content analysis.

Data workers consider implementation and tools when specifying statistical models.

When we asked data workers to specify their models without considering implementation, we antici-

pated they would name specific statistical tests (e.g., “ANOVA”), approaches (e.g., “linear regression”

or “decision trees”), or write mathematical models (e.g., Y = B0 + B1Xage + B2Xgender) that they

could then implement using their tools because (a) some researchers in the literature survey did so in

their papers and (b) several data workers mentioned having years of analysis experience. However,

despite the explicit instruction to disregard implementation, 16 data workers provided to-do lists or

summaries of steps to perform a statistical analysis as their model specifications [D1, D2, D3, D5,

D7, D8, D9, D11, D12, D14, D16, D18, D20, D21, D22, D23, D24]. Of these 16 data workers, eight

also named specific statistical tests in their descriptions [D3, D7, D8, D11, D12, D14, D18, D20].

For example, D8, a data science consultant with 7/10 analysis experience, specified a list of steps

that included creating new variables that aggregated columns in the dataset, cleaning and wrangling

the data, visualizing histograms, performing chi-squared test, and interpreting the statistical results.

Notably, D8 also specified null and alternative hypotheses, which acted as an intermediate artifact

during hypothesis formalization. Figure 4.4 shows D8’s statistical specification.

Only four data workers named specific statistical methods without describing their steps [D4, D6,
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Figure 4.4: Sample statistical specification from analyst D8 in the lab study.
The lab study tasked analysts to specify their statistical models without considering implementation. We
expected analysts would represent their statistical models using statistical test names or mathematical equa-
tions. Instead, most analysts specified statistical procedures for performing statistical models using todo lists
and summaries of steps, which sometimes included mentions of software tools, showing that implementation
was an important consideration and that tool familiarity may limit which statistical models analysts consider
and implement. Data worker D8 specified their model through a combination of statistical test names (e.g.,
Chi-squared test) and a list (split across two pages) of detailed steps involved in creating new variables,
cleaning and wrangling data, visualizing data, and testing their hypothesis.

D15, D17]. Two data workers, D22, a neuroscientist by training with 8/10 analysis experience, and

D19, an educator with 6/10 analysis experience, attempted to specify their models mathematically.

D22 used the familiar R syntax: “Current Income ~ Educational attainment + Gender + Interactions

of those two.” On the other hand, D19 gave up because although they knew the general form of

logistic regression, they did not know how to represent the specific variables in the model they

wanted to perform.

The implementation and software details data workers discussed and included in their specifica-

tions suggest that data workers prefer to skip over mathematical equations and jump to specification

and implementation in their tools. Although it is possible that study instructions primed data work-

ers to respond about how they would perform, rather than represent, the task even after researcher

clarifications, this would not explain the level of implementation detail data workers included. Nine

data workers went so far as to mention specific libraries, even functions, that they would use to

program their analyses [D3, D9, D12, D13, D14, D16, D19, D21, D23]. In their reflective interviews,

data workers also expressed that they often do not specify models outside of implementing them,

which D19 succinctly described:

“I don’t normally write this down because all of this is in a [software] library.”
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Data workers’ statistical knowledge appears to be situated in the programs they write, and their

knowledge of and familiarity with tools constrains the statistical methods they explore and consider.

As such, tools may be a key point of intervention for guiding data workers toward statistical methods

that may be unfamiliar but are best suited for their conceptual hypotheses.

Data workers try to fit analyses to previous projects and familiar approaches.

Data workers spent significant thought and time categorizing their analyses as “prediction,” “clas-

sification,” or “correlation” problems [D2, D3, D7, D10, D11, D18, D19, D21, D22]. To categorize,

data workers relied on their previous projects. While reflecting on their typical analysis process,

D21, a software engineer working in healthcare, said (emphasis added),

“I usually tend to jump...to look at data and match [the analysis problem] with

similar patterns I have seen in the past and start implementing that or do some rough

diagrams [for thinking about parameters, data type, and implementation] on paper...and

start implementing it.”

Data workers also looked at variable data types (i.e., categorical or continuous) to categorize. For

example, D3, a freelance analyst, pivoted from thinking about predicting income to classifying

income groups (emphasis added) based on data type information:

“The income, the column, the target value here, is categorical. I think maybe it wouldn’t

be a bad idea to see what classification tasks, what we could do. So instead of trying

to predict because we’re not trying to predict an exact number, it seems...like more

of a classification problem...”

A provocative case of adhering to prior experiences was D6, a psychological research scientist.

Although several data workers were surprised and frustrated that income was ordinal in the dataset

with categories such as“Under $10K,” “$10K to $20K,” “$20K to $30K,” up to ”150K+”, none

went so far as D6 to synthetically generate normally distributed income data so that they could

implement the linear regression models they had specified despite saying they knew that income

was not normally distributed.

When asked further about the importance of normal data, D6 described how they plan analyses

based on having normal data, strive to collect normally distributed, and rely on domain knowledge

to transform the data to be normal when it may not be after collection:

“...I feel like having non normal data is something that’s like hard for us to deal with.

Like it just kind of messes everything up like. And I know, I know it’s not always

assumption of all the tasks, but just that we tend to try really hard to get our variables
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to be normally distributed. So, you know, we might like transform it or, you know, kind

of clean it like clean outliers, maybe transform if needed...I mean, it makes sense because

like a lot of measures we do use are like depressive symptoms or anxiety symptoms and

kind of they’re naturally normally distributed...I can probably count on my hand the

number of non parametric tests I’ve like included in manuscripts.”

D6’s description of their day-to-day analyses exemplifies the dual-search nature of hypothesis for-

malization: Data workers (i) jump from hypothesis refinement to model specification or implemen-

tation with specific proxies in mind and then (ii) collect and manipulate their data to fit their model

choices.

We recognize that data workers may have taken shortcuts for the study they would not typically

make in real life. Nevertheless, the constraints we imposed by using a real-world dataset are to be

expected in real-world analyses. Therefore, our observations still suggest that rather than consider

the nature and structure of their hypotheses and data to inform using new statistical approaches,

which statistical pedagogy and theory may suggest, data workers may choose familiar statistical

approaches and mold their new analyses after previous ones.

Data workers try to minimize their biases by focusing on data.

Throughout the study, data workers expressed concern that they were biasing the analysis process.

Data workers drew upon their personal experiences to develop hypotheses [D5, D10, D13, D15, D16,

D20, D21, D24] and conceptual models [D8, D12, D20, D24]. D12, a data analysis project manager,

described how their personal experiences may subconsciously bias their investigation by comparing

a hypothetical physicist and social worker answering the same research question:

“Whereas a social worker by design...they’re meant to look at the humanity behind the

numbers [unlike a physicist]. So like, they may actually end up with different results...actually

sitting in front of this data, trying to model it.”

A few data workers even refused to specify conceptual models for fear of biasing the statisti-

cal analyses [D10, D11, D19]. On the surface, data workers resisted because they believed that

some relationships, such as the effect of age on income, were too “obvious” and did not warrant

documentation [D10, D11]. However, relationships between variables that were “obvious” to some

data workers were not to others. For instance, D10, a business analyst, described how income

would plateau with age, but other data workers, such as D18, assumed income would monotonically

increase with age.

When we probed further into why D10, D11, and D19 rejected a priori conceptual models, they

echoed D10’s belief that conceptual models “put blinders on you.” Even the data workers who
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created conceptual models echoed similar concerns of wanting to “[l]et the model do the talking”

in their implementations [D3, D15, D18, D19]. Instead of conceptual modeling, D10 chose to look

at all n-ary relationships in the dataset to determine which variables to keep in a final statistical

model, saying,

“It’s so easy to run individual tests...You can run hypothesis tests faster than you can

actually think of what the hypothesis might be so there’s no need to really presuppose

what relationships might exist [in a conceptual model].”

Of course, one could start from the same premise that statistical tests are so easy to execute and

conclude that conceptual modeling is all the more important to prioritize analyses and prevent false

discoveries.

Similarly, data workers were split on whether they focused their implementation exclusively on

their hypotheses or examined other relationships in the dataset opportunistically. Nine data work-

ers stuck strictly to testing their hypotheses [D1, D4, D5, D6, D7, D11, D13, D20, D24]. However,

five data workers were more focused on exploring relationships in the dataset and pushed their

hypotheses aside [D2, D3, D10, D16, D18], and an additional four data workers explored relation-

ships among variables not previously specified in their hypotheses in addition to their hypotheses

[D14, D15, D17, D21]. D18 justified their choice to ignore their hypotheses and focus on emergent

relationships in the data by saying that they wanted to be “open minded based on the data...open

to possibilities.”

Data workers’ concerns about bias and choice of which relationships to analyze (hypothesis only

vs. opportunistic) highlight the tension between the two searches involved in hypothesis formal-

ization: concept-first model implementations and implementation-first conceptual understanding.

Conceptual models are intermediate artifacts that could reconcile the two search processes and

challenge data workers’ ideas of what “data-driven” means. However, given some data workers’

resistance to prior conceptual modeling, workflows that help data workers conceptually model as

a way to reflect on their model implementations and personal biases may be more promising than

ones that require them before implementation.

Data workers face challenges obtaining and integrating conceptual and statistical in-

formation.

Based on data workers’ information search behaviors and self-reports, we found that data workers

faced challenges obtaining and integrating both domain and statistical knowledge.

Data workers consulted outside resources such as API documentation, Wikipedia, and the To-

wards Data Science blog throughout the study: one while brainstorming hypotheses [D13]; three
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while conceptual modeling [D12, D13, D22]; six while specifying statistical models [D3, D6, D12,

D13]. Six data workers also mentioned consulting outside resources while implementing their anal-

yses [D1, D3, D11, D14, D15, D21]. By far, statistical help was the most common.

Furthermore, when data workers reflected on their prior data analysis experiences, they detailed

how collaborators provided domain and statistical expertise that are instrumental in formalizing

hypotheses. Collaborators share data that help domain experts generate hypotheses [D9], critique

and revise conceptual models and proxies [D4, D8], answer critical data quality questions [D10],

and ensure statistical methods are appropriate [D5, D6, D22].

In the survey participants completed after implementing their analyses, the three most commonly

reported challenges were (i) formatting the data [D1, D4, D5, D6, D13, D16, D18, D20, D21, D24],

(ii) identifying which statistical analyses to perform with the data to test their hypotheses [D1,

D11, D14, D18, D20, D21], and (iii) implementing and executing analyses using their tools [D1,

D6, D7, D13, D20, D21]. Although we expected data workers would have difficulty wrangling their

data based on prior work [KPHH12], we were surprised that identifying and executing statistical

tests were also prevalent problems given that (a) data workers were relatively experienced and (b)

could choose their tools. These results, together with our observations that data workers rely on

their prior experiences and tools, suggest that data workers have difficulty adapting to new scenarios

where new tools and statistical approaches may be necessary.

4.3.3 Takeaways from the Lab Study

After the first session, 13 out of the 24 data workers described all the tasks as familiar, and 10

described most of the tasks and process as familiar. Data workers commonly remarked that although

the process was familiar, the order of the tasks was “opposite” of their usual workflows. In practice,

data workers may start with model implementation before articulating conceptual hypotheses, which

opposes the direction of data analysis that the ASA recommends [CEG+16]. Nevertheless, our

observations reinforce the dual-search, non-linear nature of hypothesis formalization.

Moreover, one data worker, D24, a physics researcher who primarily conducted simulation-

based studies expressed that the study and its structure felt foreign, especially because they had

no control over data collection. Other data workers in the study also described the importance of

designing and conducting data collection as part of their hypothesis formalization process [D4, D6,

D9]. Designing data collection methods informs the statistical models data workers plan to use and

helps to refine their conceptual hypotheses by requiring data workers to identify proxies and the

feasibility of collecting the proxy measures, reinforcing what we saw in the content analysis. The

remarks also suggest that disciplines practice variations of the hypothesis formalization process we

identify based on discipline-specific data collection norms and constraints. For example, simulating
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data may sometimes take less time than collecting human subjects data, so data workers working

with simulations may dive into modeling and data whereas others may need to plan experiments

for a longer period of time.

Approximately half of the data workers had either just finished or were enrolled in undergrad-

uate or graduate programs involving data analysis. As such, half of our sample likely has limited

professional experience outside of their studies and/or freelance work on Upwork. Additionally,

data work available on Upwork may be more narrowly focused and less representative of end-to-end

data analysis or research projects expected of those with greater statistical expertise. Still, several

data workers in our study mentioned other employments where they gained professional experience

working on larger analysis and research projects. Despite the limitations of recruiting participants

from Upwork and word of mouth, our sample represents data workers who have training in a di-

versity of disciplines (e.g., medicine, psychology, business), are familiar with a range of statistical

methods, and have experience using a broad range of statistical tools. As such, the data workers

in our study may be representative of analysts who are likely to benefit most from new tools for

supporting hypothesis formalization.

Finally, we found that data workers relied on prior experiences and tools to specify and formalize

their hypotheses. Tools that scaffold the hypothesis formalization process by suggesting statistical

models that operationalize the conceptual hypotheses, conceptual models, or partial specifications

data workers create along the way may (i) nudge data workers towards more robust analyses that

test their hypotheses, (ii) overcome limitations of data workers’ prior experiences, and (iii) even

expand data workers’ statistical knowledge. Thus, we investigated how current tool designs serve

(or under-serve) hypothesis formalization.

4.4 Analysis of Software Tools

To understand how the design of statistical computing tools may support or hinder hypothesis

formalization (RQ3 - Tools), we analyzed widely used software packages and suites. Throughout,

we use the term “package” to refer to a set of programs that must be invoked through code, such

as lme4, scipy, and statsmodels. We use the term “suite” to refer to a collection of packages

that end-users can access either through code or graphical user interfaces (GUIs), such as SPSS,

SAS, and JMP. We use the term “tool” to refer to both. Software packages were a unit of analysis

because they are necessary for model implementation regardless of medium (e.g., computational

notebook, CoLab, RStudio). As such, our findings apply to tools that provide wrappers around

packages included in our sample.
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4.4.1 Method

Sample: Our sampling procedure involved two phases: (i) identifying software packages and suites

for model implementation (not visual analysis tools like Tableau) mentioned more than once across

the content analysis and lab study and (ii) adding recommended packages and suites from online

data science communities our lab participants mentioned or used (e.g., Towards Data Science). To

identify these additional tools, we consulted online data analysis fora [Gro19; Bob17; Bob18; Pra19].

The final sample included 20 statistical tools: 14 packages (R: 10, Python: 4); three suites that

support in-tool programming; and three suites that do not support programming. Table 4.1 contains

an overview of our sample and results.

Analysis: Four specific questions guided our analysis:

• Specialization: Data workers in the lab study eagerly named specific statistical tools they

would use and looked up tool documentation during the tasks. This prompted us to ask, How

specialized are the tools, and how might specialization (or lack thereof) affect how end-users

discover and use them to formalize hypotheses?

• Statistical Taxonomies: Data workers in the lab study tried to mold their analyses to prior

experiences and their taxonomies of statistical methods. We wondered what role tools play

in this: How do tools organize and group statistical models? How might tool organization and

end-users’ taxonomies interplay during hypothesis formalization?

• Model Expression: Data workers in the lab study jumped to model implementation through-

out the tasks. Only half provided names of statistical methods. We wondered if this was due

to how tools enable end-users to express their models: What notation must end-users use to

express models in the tools?

• Computational Issues: Data workers in the lab study described their statistical models

using specific function calls. Similarly, although it was uncommon for researchers in the

content analysis to specify the software tools they used, when they did, researchers specified the

functions, parameters, and settings used. This prompted us to wonder about the importance

of computational settings: What specific kinds of computational control do tools provide end-

users and how might that impact hypothesis formalization?

To answer the four questions for each statistical tool, the first author read and took notes

on published articles about tools’ designs and implementations, API documentation and reference

manuals, and available source code; followed online tutorials; consulted question-and-answer sites

(e.g., StackExchange) when necessary; and analyzed sample data with the tools. The first author

paid particular attention to tool organization, programming idioms, functions and their parameters,
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and tool failure cases. Table 4.1 contains citations for resources consulted in the analysis. The

iterative analysis process involved discussions among the co-authors about how to evaluate the

properties of tools from our perspectives as both tool designers/maintainers and end-users. Here,

we focus on end-user (hereafter referred to as analyst) perspectives informed by our lab study and

make callouts to details relevant for tool designers.

4.4.2 Findings and Discussion

We discuss our findings in light of our characterization of hypothesis formalization in Figure 4.1.

We refer to specific steps and transitions in Figure 4.1 in boldface.

Specialization.

Half the tools [T2, T3, T4, T5, T6, T7, T8, T9, T11, T12] in our sample are specialized in the

scope of statistical analysis methods they support (e.g., brms supports Bayesian generalized linear

multilevel modeling). edgeR [T3] provides multiple modeling methods but is specialized to the

context of biological count data. Such specialized tools are vital to creating a widely adopted

statistical computing ecosystem, such as R.

Despite its importance, tool specialization pushes computational concerns higher up the hypothe-

sis formalization process. Specialized tools require analysts to consider computational settings while

picking a statistical tool and, possibly, even while mathematically relating their variables. They fuse

the last two steps of hypothesis formalization (Statistical Specification and Model Implemen-

tation). Ultimately, specialization requires analysts to have more (i) computational knowledge and

(ii) foresight about their model implementations at the cost of focusing on conceptual or data-related

concerns early in hypothesis formalization.

One way tool designers minimize the requisite computational knowledge and foresight while

providing the benefits of specialized packages — which may be optimal for specific statistical

models or data analysis tasks — is to provide micro-ecosystems of packages. For example, R’s

tidymodels [KW20] and tidyverse [WAB+19] create micro-ecosystems that use consistent

API syntax and semantics across interoperable packages. They also push analysts towards what

the tool designers believe to be best practices, such as the use of the tidy data format [W+14].

Tools that aim to support hypothesis formalization may consider fitting into or creating micro-

ecosystems that provide tool support all along the process, focusing analysts on concepts, data, or

model implementation at various points.
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Table 4.1: Overview of the software tools included in our analysis.

Half of the tools are specialized for specific modeling use cases. Most tools use mathematical notation
(T18–T20 (X*) even use mathematical notation in their GUIs). Most tools also provide a wide range of
computational control although sometimes they require additional packages [T5, T13]. Tool specialization,
organization, notation, and computational control focus analysts on model implementation details, sometimes
at the expense of focusing on their conceptual hypotheses.
ID Tool name Specialized Mathematical Computational References

Scope Notation Control
R Packages

T1 MASS — X X [RVB+20]
T2 brms X X X [B+17; BB16]
T3 edgeR X X X [CLM+20;

CMR+20]
T4 glmmTMB X X X [BKvB+17;

MSN+20]
T5 glmnet X — X(additional) [FHT+20; HQ14]
T6 lme4 X X X [BMBW14;

BMB+19]
T7 MCMCglmm X X X [H+10; Had20]
T8 nlme X X X [PBD+20]
T9 RandomForest X X X(minimal) [BCLW18]
T10 stats (core library) — X X [Tcw20]
Python Packages

T11 Keras X — X(minimal) [C+15]
T12 Scikit-learn X — X [sld20; PVG+11;

BLB+13]
T13 Scipy (scipy.stats) — — X(additional) [JOP+21a;

JOP+21b;
JOP+21c]

T14 Statsmodels — X — [SP10; PSTsd20]
Suites, with DSLs for programming

T16 SPSS — X X [SPS21]
T15 Matlab (Statistics and ML Toolbox) — — X [TM20a; TM20b]
T17 Stata — X — [Sta21; LLC20b;

LLC20a]
Suites, without programming

T18 GraphPrism — X* X [GS20]
T19 JASP — X* — [oA20]
T20 JMP — X* — [SAS20a; JS11]
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Statistical taxonomies.

A consequence of tool specialization is the fragmented view of statistical approaches. For exam-

ple, we observed analysts in the lab study who viewed the analysis as a classification task gravi-

tate towards machine learning-focused libraries, such as RandomForest [T9], Keras [T11], and

scikit-learn [T12]. Because classification can be implemented as logistic regression, any tool

that supports logistic regression, such as the core stats library in R [T10], provides equally valid,

alternative perspectives on the same analysis and hypothesis. However, tools obfuscate these con-

nections and do not aid analysts in considering reasonable statistical models that may be unfamiliar

or outside their personal taxonomy. This may explain why analysts adhered to their personal tax-

onomies during the lab study.

This problem carries over to tools that support numerous statistical methods. Ten tools in

our sample intend to provide more comprehensive statistical support [T1, T10, T13, T14, T15,

T16, T17, T18, T19, T20]. These tools group statistical approaches using brittle and inconsistent

taxonomies based on data types [T17]; analysis classes that are both highly specific (e.g., “Item

Response Theory”) and vague (e.g., “Multivariate analyses”) [T15, T16, T17, T18, T19, T20]; and

disciplines or applications (e.g., “Epidemiology and related,” “Direct Marketing”) [T16, T17, T20].

Although well-intended to simplify statistical method selection, tools’ taxonomies are at times

misleading. For instance, JMP combines various linear models into a “Fit Model” option that

is separate from “Predictive Modeling” and “Specialized Modeling,” which are also distinct from

the more general “Multivariate Methods.” Once analysts select the “Fit Model” option, they can

specify the “Personality” of their model as “Generalized Regression,” “Generalized Linear Model,”

or “Partial Least Squares,” among many others. This JMP menu structure implies that (i) a Partial

Least Squares model is distinct from a regression model when it is in fact a type of regression model

and (ii) regression is not useful for prediction, which is not the case.

In these ways, tools add a “Navigate taxonomies” step before the Statistical Specification

step, requiring analysts to match their conceptual hypotheses with the tools’ taxonomies, which may

misalign with their personal taxonomies. One reason for this issue may be that tools do not leverage

analysts’ intermediate artifacts or understanding during hypothesis formalization. By the time

analysts transition to Statistical Specification, they have refined their conceptual hypotheses,

developed causal models, and made observations about data. However, tools’ taxonomies require

analysts to set these aside and consider another set of decisions imposed by tool-specific groupings

of statistical methods. In this way, tool taxonomies may introduce challenges that detract from

hypothesis formalization.
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Model expression: Syntax and semantics

Fifteen tools in our sample provide analysts with interfaces that use mathematical notation to

express statistical models [T1, T2, T3, T4, T6, T7, T8, T9, T10, T14, T16, T17, T18, T19,

T20]. R and Python packages use symbolic mathematical syntax, and SPSS and Stata use natural

language-like syntax. Expressing a linear model with Sex, Race, and their interaction as predictors

of Annual Income involves the formula AnnualIncome ∼ Sex + Race + Sex*Race in lme4

and AnnualIncome BY Sex Race Sex*Race in SPSS. In a linear execution of steps involved

in hypothesis formalization where analysts relate variables mathematically (Mathematical Equa-

tion) before specifying and implementing models using tools (Statistical Specification, Model

Implementation), the mathematical interfaces match analysts’ progression. However, in the lab

study, analysts did not specify their models mathematically even when given the opportunity, sug-

gesting that mathematical syntax may not adequately capture analysts’ conceptual or statistical

considerations.

Syntactic similarity between packages may lower the barrier to trying and adopting new statis-

tical approaches that more directly test hypotheses and therefore benefit hypothesis formalization.

At the same time, syntactic similarity may also introduce unmet expectations of semantic similar-

ity. For example, brms [T2] uses the same formula syntax as lme4 [T6], smoothing the transition

between linear modeling and Bayesian linear modeling for analysts. However, based on syntac-

tic similarity, analysts may incorrectly assume statistical equivalence in computed model values.

For example, in brms, the model intercept is the mean of the posterior when all the independent

variables are at their means, but in lme4, the intercept is the mean of the model when all the

independent variables are at zero.

Conversely, tools introduce syntactic differences between statistical approaches that are for the

most part semantically equivalent, which may lead to additional challenges in hypothesis formal-

ization. For instance, an ANOVA with repeated measures and a linear mixed effects model are

similar in intent but require two different function calls, one without a formula (e.g., AnovaRM

in statsmodels [T14]) and another with (e.g., mixedlm in statsmodels [T14]). Even when

considering only ANOVA, tools may provide similar syntax but implement different sums of squares

procedures for partitioning variance (i.e., Type I, Type II, or Type III).6 By default, R’s stats

core package [T10] uses Type I, statsmodels [T14] uses Type II, and SPSS [T16] uses Type III.

The three different sum of squares procedures lead to different F-statistics and p-values, which may

lead analysts to different conclusions. More importantly, the procedures encode different concep-

6Type I is (a) sensitive to the order in which independent variables are specified because it assigns variance
sequentially and (b) allows interaction terms. Type II (a) does not assign variance sequentially and (b) does not
allow interaction terms. Type III (a) does not assign variance sequentially and (b) allows interaction terms. For an
easy-to-understand blog post, see [Kor19].
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tual hypotheses. If analysts have theoretical knowledge or conceptual hypotheses about the order

of independent variables, tools defaulting to Type I (e.g., R’s stats core library) align the model

implementation with the conceptual hypotheses. However, if analysts do not have such concep-

tual hypotheses, tools’ default behavior would execute (without error) and silently respond to a

conceptual hypothesis different from the one the analyst seeks to test. In this way, syntactic and

semantic mismatches can create a rift between model implementations and conceptual hypotheses.

Furthermore, the impact of tools’ “invisible” model implementation choices reinforces the interplay

between conceptual and model implementation concerns during hypothesis formalization.

Computational issues.

Tools provide end-users with options for optimizers and solvers used to fit statistical models [T1, T2,

T4, T6, T7, T8, T10, T11, T13, T16, T18], convergence criteria used for fitting models [T3, T6, T16,

T18], and memory and CPU allocation [T2, T5, T12, T15], among more specific customizations.

For instance, lme4 [T6] allows analysts to specify the nonlinear optimizer and its settings (e.g., the

number of iterations, convergence criteria, etc.) used to fit models. In brms [T2], analysts can also

specify the number of CPUs to dedicate to fitting their models. Some computational settings are

akin to performance optimizations, affecting computer utilization but not the results. However, not

all computational changes are so well-isolated.

For example, the failure of a model’s inference algorithm to converge (in Model Implemen-

tation) may prompt mathematical re-formulation (Mathematical Equation), which may cast

Observations about Data in a new light, prompting Causal Model and Conceptual Hypoth-

esis revision. In other words, computational failures and decisions may bubble up to conceptual

hypothesis revision and refinement, which may then trickle back down to model implementation

iteration, and so on. In this way, computational control can be another entry into the dual-search

process of hypothesis formalization.

In theory this low-level control could help analysts formalize nuanced conceptual hypotheses in

diverse computational environments. However, we found that tools do not currently provide feed-

back on the ramifications of these computational changes, introducing a gulf of evaluation [Nor86].

Analysts can easily change parameters to fine-tune their computational settings, but how they

should interpret their model implementations and revisions conceptually is unaddressed, suggesting

opportunities for future tools to bridge the conceptual and model implementation gap.

4.4.3 Takeaways from the Analysis of Tools

Taken together, our analysis shows that tools can support a wide range of statistical models but ex-

pect analysts to have more statistical expertise than may be realistic. They provide limited guidance
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for analysts (i) to express and translate their conceptual and partially-formalized concerns and (ii)

identify reasonable models. Tools also provide little-to-no feedback on the conceptual ramifications

of model implementation iterations. These gaps reveal a misalignment between analysts’ hypothesis

formalization processes and tools’ expectations and design. Possible reasons for this mismatch may

be that tools do not scaffold or embody the dual-search nature of hypothesis formalization or lever-

age all the intermediate artifacts analysts may create (e.g., refined conceptual hypotheses, causal

models, data observations, partial specifications, etc.) throughout the process.

4.5 Design Implications for Statistical Analysis Software

Our findings suggest three opportunities for tools to facilitate the dual-search process and align

conceptual hypotheses with statistical model implementations at various stages of hypothesis for-

malization.

Meta-libraries: Connecting Model Implementations with Mathematical Equa-
tions

Specialized tools, although necessary for sophisticated statistical computation, require a steep learn-

ing curve. Meta-libraries could allow analysts to specify their statistical models in high-level code;

execute the statistical models using the appropriate libraries in their knowledge bases; and then

output library information, functions invoked, any computational settings used, the mathematical

model that is approximated, and the statistical results. Libraries such as Parsnip [KVR20] have

begun to provide a unified higher-level interface that allows analysts to specify a statistical model

using more “generically” named functions, parameter names, and symbolic formulae (when neces-

sary). Parsnip then compiles and invokes various library-specific functions for the same statistical

model.

Probabilistic programming languages (PPLs), such as Pyro [BCJ+19], Stan [CGDH+17], BUGS

[LTBS00], PyMC [SWF16], already enable the development of meta-libraries. PPLs support mod-

ular specification of data, probabilistic models, and probabilistic hypotheses. Existing libraries,

including brms, provide higher-level APIs whose syntax uses symbolic formulae, for instance, and

compile to programs in a PPL (i.e., Stan in the case of brms).

As already seen in Parsnip and tools using PPLs, meta-libraries could bring three benefits.

First, they would provide simpler, less fragmented interfaces to analysts while continuing to take

advantage of tool specialization. Second, meta-libraries that output complete mathematical repre-

sentations would more tightly couple mathematical representations with implementations, providing

an on-ramp for analysts to expand their statistical knowledge. Third, meta-libraries that show the
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mathematical representations alongside underlying libraries’ function calls could show syntactical

variation in underlying libraries, indirectly teaching analysts how they might express their statistical

models in other tools, familiarizing analysts with new tools and statistical models, and even mend

fragmented views of identical statistical approaches (e.g., ANOVA and regression).

Future meta-libraries could consider providing a higher-level, declarative interface that does

not require analysts to write symbolic formulae. Designing such declarative meta-libraries would

require formative elicitation studies (similar to natural programming studies such as [VAK18]) on

declarative primitives that are memorable, distinguishable, and reliably understood. An additional

challenge would lie in maintaining support for various libraries executed under the hood, especially

as libraries change their APIs, which would strengthen the case for meta-libraries. Although meta-

libraries would not solve the problems involved in understanding how computational settings affect

statistical model execution or conceptual hypotheses, they could nevertheless provide scaffolding for

analysts to more closely examine specific libraries, especially if multiple libraries execute the same

statistical model but do not all encounter the same computational bottlenecks.

High-level Libraries: Expressing Conceptual Hypotheses to Bootstrap Statistical
Model Implementations

The absence of tools for directly expressing conceptual hypotheses may be an explanation for why

data workers in the lab study dove into statistical model implementation details. High-level li-

braries could allow analysts to specify data collection design (e.g., independent variables, depen-

dent variables, controlled effects, possible random effects); variable data types; expected or known

covariance relationships based on domain expertise; and hypothesized findings in a library-specific

grammar. High-level libraries could compile these conceptual and data declarations into weighted

constraints that represent the applicability of various statistical approaches, in a fashion similar

to Tea [JDR+19], a DSL for automatically selecting appropriate statistical analyses for common

hypothesis tests. Libraries could then execute the appropriate statistical approaches, possibly by

using a meta-library as described above.

In addition to questions of how to represent a robust taxonomy of statistical approaches com-

putationally, another key challenge for developing high-level libraries is identifying a set of minimal

yet complete primitives that are useful and usable for analysts to express information that is usually

expressed at different levels of abstraction: conceptual hypotheses, study designs, and possibly even

partial statistical model specifications. For instance, even if a conceptual hypothesis is expressible in

a library, it may be impossible to answer with a study design or partial statistical model that is ex-

pressed in the same program. An approach may be to draw upon and integrate aspects from existing

high-level libraries and systems that aim to address separate steps of the hypothesis formalization
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process, such as Touchstone2 [EWBLM19] for study design and Tea and Statsplorer [WSVB15] for

statistical analysis.

Bidirectional Conceptual Modeling: Co-authoring Conceptual Models and Sta-
tistical Model Implementations

Conceptual, or causal, modeling was difficult for the analysts in the lab study. Some even resisted

conceptual modeling for fear of biasing their analyses. Yet, implicit conceptual models were evident

in the hypotheses analysts chose to implement and the sub-hypotheses researchers articulated in

the content analysis.

Mixed-initiative systems that make explicit the connection between conceptual models and sta-

tistical model implementations could facilitate hypothesis formalization from either search process

and allow analysts to reflect on their analyses without fear of bias. For example, a mixed-initiative

programming environment could allow analysts to write an analysis script, detect data variables

in the analysis scripts, identify how groups of variables co-occur in statistical models, and then

visualize conceptual models as graphs where the nodes represent variables and the edges repre-

sent relationships. The automatically generated conceptual models would serve as templates that

analysts could then manipulate and update to better reflect their internal conceptual models by

specifying the kind of relationship between variables (e.g., correlation, linear model, etc.) and as-

signing any statistical model roles (e.g., independent variable, dependent variable). As analysts

update the visual conceptual models, they could evaluate script changes the system proposes. In

this way, analysts could externally represent their causal models while authoring analysis scripts

and vice versa.

Although bidirectional programming environments already exist for vector graphics creation

[HLC19], they have yet to be realized in mainstream data analysis tools. To realize bidirectional,

automatic conceptual modeling, researchers would need to address important questions about (i)

the visual grammar, which would likely borrow heavily from the causal modeling literature; (ii)

program analysis techniques for identifying variables and defining co-occurrences (e.g., line-based

vs. function-based) in a way that generalizes to multiple statistical libraries; and (iii) adoption,

as analysts who may benefit most from such tools (likely domain non-experts) may be the most

resistant to tools that limit the number of “insights” they take away from an analysis.

4.6 Discussion

Hypothesis formalization is a dual-search process of translating conceptual hypotheses into sta-

tistical model implementations. Due to constraints imposed by domain expertise, data, and tool
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familiarity, the same conceptual hypothesis may be formalized into different model implementations.

A single model implementation may be useful for making multiple statistical inferences. The same

model implementation may also formalize two possibly opposing hypotheses. To navigate these

constraints, analysts use problem-solving strategies characteristic of the larger scientific discovery

process [KD88; SK95]. As such, hypothesis formalization exemplifies how data science is a design

practice.

At a conceptual level, hypothesis formalization involves hypothesis refinement, which, to use

Schunn and Klahr’s language [SK95], is a scoping process. In the formative content analysis, we

found that researchers decomposed their research goals and conceptual hypotheses into specific,

testable sub-hypotheses and concretized constructs using proxies, born of theory or available data.

Also, we found that analysts in the lab study also quickly converged on the need to specify estab-

lished proxies or develop them based on the data schema presented. In hypothesis formalization,

scoping incorporates domain- and data-specific observations to qualify the conceptual scope of

researchers’ hypotheses. In other words, hypothesis refinement is an instance of means-end anal-

ysis [NS+72], a problem-solving strategy that aims to recursively change the current state of a

problem into sub-goals (i.e., increasingly specific objectives) in order to apply a technique (i.e., a

particular statistical model) to solve the problem (i.e., test a hypothesis).

At the other computational endpoint of hypothesis formalization, statistical model implementa-

tion also involves iteration. Through our analysis of software tools, we found that analysts must not

only select tools among an array of specialized and general choices but also navigate tool-specific

taxonomies of statistical approaches. These tool taxonomies may both differ from and inform ana-

lysts’ personal categorizations, potentially explaining why analysts in our lab study relied on their

personal taxonomies and tools. Based on their prior experience, analysts engage in analogical rea-

soning [HHNT89], finding parallels between the present analysis problem’s structure and previously

encountered ones or ones that fit a tool’s design easily.

Upon selecting a statistical function, analysts may tune computational settings, choose different

statistical functions or approaches, which they may tune, and so on. In this way, the model im-

plementation loop in hypothesis formalization captures the “debugging cycles” analysts encounter,

such as the census researcher in the introduction. The tool ecosystem as a whole supports diverse

model implementations, even for the same mathematical equation. However, the tool interfaces

provide low-level abstractions, such as interfaces using mathematical formulae that, based on our

observations in the lab study, do not support the kind of higher-level conceptual reasoning required

of hypothesis formalization.
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4.7 Future Work

The steps, considerations, and strategies we have identified are domain-general. Domain-specific

expertise likely influences how quickly analysts switch between steps and strategies during the

dual-search process. Domain experts, including researchers in our content analysis, may know

which statistical model implementations and computational settings to use a priori and design

their studies or specify their conceptual hypotheses in light of these expectations — incorporating

means-end analysis and analogical reasoning strategies — more quickly. It may be these insights

that analysts in our lab study sought when they looked online for conceptual and statistical help.

Future work could observe how domain experts perform hypothesis formalization and character-

ize when and how analysts draw upon their own or collaborators’ expertise to circumvent iterations

or justify early scoping decisions. These insights may also shed light on how pre-registration ex-

pectations and practices could be made more effective. Given the level of detail required of some

pre-registration policies, researchers likely engage in a version of the hypothesis formalization pro-

cess we have identified prior to registering their studies. Knowing how pre-registration fits into the

hypothesis formalization process could improve the design and adoption of pre-registration practices.

Future work could also explore how hypothesis formalization may differ in machine learning

settings. In this chapter, our focus was on how analysts answer domain questions and test hypotheses

using statistical methods and their domain knowledge. Our findings may not generalize to settings

or methods where domain knowledge is less important, such as deep learning and other machine

learning-based approaches.

Finally, our findings suggest opportunities for future tools to bridge steps involved in hypoth-

esis formalization and guide analysts towards reasonable model implementations. Our analysis of

tools suggest possibilities for tools to connect model implementations to their mathematical rep-

resentations through meta-libraries, provide higher-level abstractions for more directly expressing

conceptual hypotheses, and support automated conceptual modeling. Future system development

and user testing are necessary to validate these implications and more readily support analysts

translate their conceptual hypotheses into statistical model implementations.

4.8 Summary of Contributions

The empirical studies that led us to articulate the theory of hypothesis formalization illustrates the

key challenge to authoring data analyses: Analysts must translate their implicit domain knowledge

into statistical specifications that they can implement and execute in code. As we saw in the

lab study, analysts often resort to changing their hypotheses or research questions to what they

can implement or get stuck on how to represent their conceptual knowledge in statistical models,
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highlighting the dual-search nature of hypothesis formalization. Furthermore, the summary of

hypothesis formalization (i.e., Figure 4.1) serves as a device for (i) interpretation—to explain where

and how analysts struggle in authoring statistical analyses—and (ii) inspiration—to inspire new

approaches and systems to authoring data analyses.

Our theory of hypothesis formalization highlights the discrepancy between analysts’ goals and

the statistical software tools available to them. While analysts want to understand their data to

better understand their domains or make decisions, the current ecosystem prioritizes mathematical

expressivity and computational control, features that are likely desirable for statistical experts but

not novices.

As a result, designing new data analysis tools to gather conceptual knowledge and translate

them into statistical analyses is a promising approach for statistical non-experts. In this way,

hypothesis formalization retrospectively validates our design in Tea, where its constraint-based

runtime system provided automated reasoning for Null Hypothesis Significance Tests. In order to

support more complex research questions, additional methods of explicitly grappling with more

conceptual knowledge and reasoning about different classes of statistical analyses is necessary. We

tackle this challenge for generalized linear models with and without mixed effects in Tisane.

This work was in collaboration with Nicole de Moura, Melissa Birchfield, Jeffrey Heer, and René

Just. It was originally published in ACM Transactions of Computer-Human Interaction (TOCHI)

2022 [JBDM+22a] and presented at ACM CHI 2022.
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Chapter 5

Tisane: Authoring Statistical Models via

Formal Reasoning of Conceptual and

Data Relationships

Authoring statistical models requires analysts to jointly reason about their conceptual domain

knowledge, statistical methods, and analysis implementations in code, as our theory of hypothesis

formalization describes. For instance, scientists carefully consider which covariates to include in

statistical models based on their prior knowledge of confounding. However, analysts’ conceptual

knowledge is often kept implicit. Analysts gravitate towards statistical specifications they are fa-

miliar with, even if the analyses are sub-optimal or do not assess their hypotheses, as we saw in

the previous chapter. Finally, ease of implementation further constrains the statistical models that

analysts try and use. These issues are especially salient for domain experts who lack deep statistical

or programming expertise (e.g., many researchers).

Existing statistical software exacerbates these issues because it does not allow analysts to ex-

ternalize their implicit conceptual knowledge, receive guidance on analysis approaches, or obtain

assistance with authoring low-level statistical modeling code Section 4.4. Our work on Tisane and

rTisane hypothesizes that in order to address these issues, software tools should capture analysts’

implicit conceptual models and use them to derive statistical models.

Conceptual models1 are often informal representations of variable relationships (e.g., list of

variable relationships, process diagrams, graphs), describing the underlying data generating process.

Conceptual models are difficult to reason about during statistical analysis. Their implications on

statistical modeling are not obvious, especially to statistical non-experts. For example, the impact

1Richard McElreath calls these implicit assumptions process models [McE20]. We use the term conceptual models
to differentiate them from statistical models.
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of conceptual assumptions may only become apparent after fitting multiple statistical models, if

at all. Without explicitly grappling with conceptual models prior to authoring statistical models,

analysts run the risk of introducing inconsistencies between their domain knowledge and statistical

models, which can lead to unintentionally answering a different research question and asserting a

conceptual model based on preferred results (i.e., HARKing [Ker98]).

To facilitate more accurate hypothesis formalization and analysis, we asked, How might we

derive (initial) statistical models from conceptual models? Inferring a statistical model

raises two technical challenges: (1) How do we elicit the information necessary for inferring a

statistical model? and (2) How do we infer a statistical model, given this information? We explore

and address these issues by iteratively designing, developing, and evaluating Tisane, a system for

implementing generalized linear models (GLMs) and generalized linear mixed-effects

models (GLMMs) from explicit statements of conceptual assumptions.

Tisane provides a DSL for expressing relationships between variables. Tisane compiles the

explicitly stated relationships into an internal graph representation. Tisane then traverses the

graph to infer candidate GLMs/GLMMs based on recommendations from the graphical causal rea-

soning community. Analysts can then query Tisane for a statistical model that explains a specific

dependent variable from an independent variable of interest. Tisane assists analysts in disambiguat-

ing among multiple potential statistical models, ultimately producing a single, final output script

for fitting a valid GLM/GLMM. Through this interactive process, Tisane focuses analysts on re-

flecting on and externalizing their implicit conceptual assumptions and checks that analysts do not

overlook relevant variables, such as potential confounders or data clustering, that could compromise

generalizability of statistical results.

We released Tisane as an open-source Python package available on pip (see [JS23]). Case

studies and real-world usage of Tisane demonstrated not only the viability but also the desirability

of tool support for authoring statistical models from conceptual models (Section 5.4).

5.1 Background and Related Work

At the heart of Tisane is the goal to derive statistical models from conceptual models. To do so,

Tisane relies on transforming aspects of analysts’ expressed conceptual models into causal graphs.

There are multiple frameworks for reasoning about causality [Rub04; Pea95a]. One widespread

approach is to use directed acyclic graphs (DAGs) to encode conditional dependencies between

variables [Pea95b; GPR99; Spi94; SRM+96]. If analysts can specify a formal causal graph, Pearl’s

“backdoor path criterion” [Pea95a; P+00] explains the set of variables that control for confounding.

However, in practice, specifying proper causal DAGs is challenging and error-prone for domain
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experts who are not also experts in causal analysis [SSY20]. Empirical findings may be inconclusive

or ambiguous in the causal relationships they suggest [SV18]. Statistical non-experts also lack

guidance on which variables and relationships to include [VDN+13]. Despite having important

domain knowledge, analysts do not have interfaces that allow them to express what they know

in a way that is approachable to them. Therefore, Tisane does not expect analysts to specify a

formal causal graph. Instead, analysts can express causal relationships as well as more ambiguous

relationships between variables in the DSL.

Furthermore, prior work in the causal reasoning literature shows how linear models can be de-

rived from causal graphs to make statistical inferences and test the motivating causal graph [SRM+96;

Spi94]. Recently, VanderWeele proposed the “modified disjunctive cause criterion” [Van19] as a new

heuristic for researchers without a clearly accepted formal causal model to identify confounders to

include in a linear model, for example. The criterion identifies confounders in a graph based on

expressed causal relationships. Tisane (Section 5.3) applies the modified disjunctive cause criterion

when suggesting variables to include in a GLM or GLMM. Tisane does not automatically include

variables to the statistical models because substantive domain knowledge is necessary to resolve

issues of temporal dependence between variables, among other considerations [Van19]. In rTisane

(Section 6.3), we use the more recent recommendations from Cinelli, Forney, and Pearl [CFP20] for

controls in regression models. To guide analysts through the suggestions, Tisane provides analysts

with explanations to aid their decision making during disambiguation.

Importantly, generalized linear models with or without mixed effects are not formal causal

analyses. Tisane does not calculate average causal effect or other causal estimands. Rather, Tisane

only utilizes insights about the connection between causal DAGs and linear models to guide analysts

towards including potentially relevant confounders in their GLMs grounded in domain knowledge.

5.1.1 Statistical Scope

Generalized linear models (GLMs) and generalized linear models with mixed effects (GLMMs)

are meaningful targets because they are commonly used (e.g., in psychology [LA15; CCWA13],

social science [KKdL98], and medicine [BBC+09; BLST13]) yet are easy to misspecify for statistical

experts and non-experts alike [BLST13; CCWA13]. We designed Tisane to support researchers who

are domain experts capable of supplying conceptual and data collection information but lack the

statistical expertise or confidence to author GLM/GLMMs accurately. Both GLMs and GLMMs

consist of (i) a model effects structure, which can include main and interaction effects and (ii) family

and link functions. The family function describes how the residuals of a model are distributed. The

link function transforms the predicted values of the dependent variable. This allows modeling of

linear and non-linear relationships between the dependent variable and the predictors. In contrast
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to transformations applied directly to the dependent variable, a link function does not affect the

error distributions around the predicted values. The key difference between GLMs and GLMMs is

that GLMMs contain random effects in their model effects structure. Random effects describe how

individuals (e.g., a study participant) vary and are necessary in the presence of hierarchies, repeated

measures, and non-nesting composition (Section 5.3.1)2.

Both GLMs and GLMMs assume that (i) the variables involved are linearly related, (ii) there

are no extreme outliers, and (iii) the family and link functions are correctly specified. In addition,

GLMs also assume that (iv) the observations are independent. Tisane’s interactive compilation

process guides users through specifying model effects structures, family and link functions to satisfy

assumption (iii), and random effects only when necessary to pick between GLMs and GLMMs and

satisfy assumption (iv).

We scoped Tisane to GLM and GLMMs because they encompass a large scope of statistical

models such that our research contributions are widely applicable and substantial. In addition,

given that GLMs and GLMMs can represent common Null Hypothesis Significance Tests (in Tea),

Tisane generalizes our approach in Tea. Tisane gives further evidence of the benefit of conceptual

programming abstractions and automated reasoning for authoring statistical analyses.

5.2 Early Design Process

Tisane’s DSL was the result of an iterative design process, including informal usability critiques of

language design and a user study with three researchers. We describe the process further below.

With Tisane’s graph specification language, we aimed to collect the necessary information to

infer a GLM/GLMM and to provide a straightforward way of collecting it. We consulted statistical

best practices on how to construct valid GLMs [KKdL98; Bar13; BLST13; McE20], which led us

to two sets of variable relationships: conceptual relationships, specifically about causal and correla-

tional relationships to explain using a GLM/GLMM and data measurement relationships about the

frequency of observations per observational unit (or “level”) and how observations may be clustered

(e.g., nesting).

We conducted an exploratory survey of 12 study design and data collection packages. We

identified these libraries using word of mouth and bibliographic references. Eight libraries focused

on the controlling the presentation of stimuli and trials (lower-level). Five were focused on the

distribution of conditions (e.g., within-subjects vs. between-subjects) and frequency of measures

(higher-level). We prototyped Tisane’s DSL based on the constructs common across these tools.

2Traditionally, the term “mixed effects” refers to the simultaneous presence of “fixed” and “random” effects in a
single model. We try to avoid these terms as there are many contradictory usages and definitions [Gel05]. When we
do use these terms, we use the definitions from Kreft and De Leeuw [KKdL98].
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Table 5.1: Overview of the study design tools that informed Tisane’s DSL.

The first five tools provide higher-level abstractions. They are designed to help researchers reason about
their study designs more holistically. The latter eight tools are lower-level and are more focused on stimuli,
trials, and progressions between trials. *JsPsych is the base package to which JsPsychR, xprmtnr, and
Jaysire provide wrappers and extensions.

Tool Support provided

Edibble [Tan21] reason about end-to-end experimental design, create data collec-
tion schema

JMP Design of Experiments [SAS20b] use templates for experiments, some design optimization, some
help with modeling

Gosset [SH17] search for optimal study design
DeclareDesign [BCCH19b] simulate data, specify and reason about designs statistically
Touchstone2 [EWBLM19] design controlled experiments while reasoning about randomiza-

tion and statistical power
Formr [AWT20] design online survey questions and flow
psychTestR [Har20] create trials, specify "timelines" for how trials should progress
Psychopy [Pei07] control how (visual) stimuli are presented, trials, and trial pro-

gression in an online experiment
Psychtoolbox [BSG12] control stimuli in an online experiment, especially for neuro-

science
JsPysch* [DL15b]

create and control trials and stimuli for online experimentsJsPyschR [Cru19]
xprmtnr [Nav19]
Jaysire [Nav21]

To better understand how using variable relationships to author statistical models affects data

analysis workflows, we tested an earlier protoype of Tisane with three computer science researchers

(in AI, HCI, and systems, whom we refer to as P1, P2, and P3, respectively). We were concerned

that we were redistributing the difficulty of authoring GLMs/GLMMs from specifying them directly

to expressing potentially obscure variable relationships.

All three researchers reported that the DSL was straightforward. P2 remarked, “The API is

very simple and elegant. It’s very intuitive. It gets me really thinking about what’s the essential

or most important part of the analysis.” Needing to explicitly state variable relationships in Tisane

prompted P1 and P2 to think more critically about their domain and discover new analysis paths

[P1, P2]. For example, Tisane helped P1, who previously had erroneously believed multiple t-tests

with Bonferroni corrections were more appropriate than a GLM for his data, realize how a GLM

could have helped him answer questions he had not had the foresight to ask beforehand. We were

encouraged to see researchers reap additional benefits of having to specify variable relationships.

Earlier versions of Tisane had a more extensive API that distinguished between observations

and experimental treatments and provided multiple ways to specify the same types of relationships.

We observed that the researchers gravitated toward a smaller subset of language constructs around

unit and measure declaration, so we introduced explicit types for units and measures and removed

redundant functions.
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5.3 System Design and Implementation

Tisane provides (i) a DSL for expressing relationships between variables (Subsection 5.3.1) and

(ii) an interactive process for deriving statistical models from conceptual relationships (Subsec-

tion 5.3.2). There are two key challenges in designing a specification from which to infer statistical

models: (1) determining the set of relationships that are essential for statistical modeling and (2)

determining the level of granularity to express relationships.

5.3.1 Tisane’s DSL and Graph Representation

In Tisane’s DSL, analysts can express conceptual and data measurement relationships between

variables. Both are necessary to specify the domain knowledge and study designs from which

Tisane infers statistical models.

1 import tisane as ts

2

3 # Variable declarations

4 adult = ts.Unit("member")

5 motivation = adult.numeric("motivation")

6 pounds_lost = adult.numeric("pounds_lost")

7 group = ts.Unit("group")

8 condition = group.nominal("regimen_condition") # control vs. treatment

9 # Variable relationships

10 condition.causes(pounds_lost)

11 motivation.associates_with(pounds_lost)

12 adult.nests_within(group)

13 # Query Tisane for a statistical model

14 des = ts.Design(dv=pounds_lost, ivs=[condition, motivation]).assign_data("data.csv")

15 ts.infer_model(design=des)

Listing 5.1: Example Tisane program. A Tisane program consists of a set of observed variables,

expresses relationships between them, and queries Tisane for a statistical model by specifying a

study design. Based on this input program, Tisane involves analysts in a disambiguation process

to generate a final output statistical modeling script.

Variables

There are three types of data variables in Tisane’s DSL: (i) units, (ii) measures, and (iii) study envi-

ronment settings. The Unit type represents entities that are observed and/or receive experimental

treatments. In the experimental design literature, these entities are referred to as “observational
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units” and “experimental units,” respectively. Entities can be both observational and experimen-

tal units simultaneously, so the DSL does not provide more granular unit sub-types. The Mea-

sure type represents attributes of units and must be constructed through their units, e.g., age =

adult.numeric('age'). Measures are proxies (e.g., minutes ran on a treadmill) of underlying

constructs (e.g., endurance). Measures can have one of the following data types: numeric, nominal,

or ordinal. Numeric measures have values that lie on an interval or ratio scale (e.g., age, minutes

ran on a treadmill). Nominal measures are categorical variables without an ordering (e.g., race).

Ordinal measures are ordered categorical variables (e.g., grade level in school). We included these

data types because they are commonly taught and used in data analysis. The SetUp type repre-

sents study environment settings that are neither units nor measures. For example, time is often

an environmental variable that differentiates repeated measures but is neither a unit nor a measure

of a specific unit.

Relationships between Variables
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Figure 3: Code snippets of conceptual and data measurement relationships written in Tisane’s study design specification lan-
guage and their representation in Tisane’s graph IR. Variables are named with u for units, m for measures, and v for data
variables that can be either units or measures. All edges depicted are those that are added due to the relationship. In the
moderates example, we assume that m1 and m2 both belong to the same unit, and for simplicity, the attribution edge (labeled as
“has”) from m1 and m2’s unit is not shown. For more complex examples, see the supplemental materials.
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Figure 4: The graph representation of the variables and rela-
tionships from the usage scenario. causes edges are labeled
with “causes”. associates_with edges are labeled with “as-
soc.” Dashed edges indicate nests_within relationships, and
dotted edges indicate has relationships.

6 STATISTICAL MODEL INFERENCE:
INTERACTIVELY QUERYING THE GRAPH
IR

After specifying variable relationships, analysts can query Tisane
for a statistical model. Queries are constructed by specifying a study
design with a dependent variable (the value to be predicted) and a
set of independent variables (predictors). Tisane processes the query
and generates a statistical model in four phases: (1) preliminary
conceptual checks that validate the study design, (2) inference of
possible effects structures and family and link functions, (3) input
elicitation to disambiguate possible models, and (4) generation of a
record of decisions during disambiguation and the final executable
script. Given that the interactive process begins with an input
program using Tisane and outputs a script for fitting a GLM or
GLMM, we call this process interactive compilation.

6.1 Preliminary checks
At the beginning of processing a query, Tisane checks that every
input study design is well-formed. This involves two conceptual
correctness checks. First, every independent variable (IV) in the
study design must either cause or be associated with the dependent
variable (DV) directly or transitively. Second, the DVmust not cause
any of the IVs, since it would be conceptually invalid to explain a
cause from any of its effects. If any of the above checks fail, Tisane
issues a warning and halts execution. By using these two checks, the
Tisane compiler avoids technically correct statistical models that
have little to no conceptual grounding (DG1 - Conceptual knowledge).
If the checks pass, Tisane proceeds to the next phase.

6.2 Candidate statistical model generation
A GLM/GLMM is comprised of a model effects structure, family
function, and link function. The model effects structure may consist
of main, interaction, and random effects. Tisane utilizes variables’
conceptual relationships to infer candidate main and interaction
effects and data measurement relationships to infer random ef-
fects. Tisane infers family and link functions based on the data
type of the DV in the query. The candidate statistical models that
Tisane generates based on the graph and query seeds an interactive
disambiguation process.

The purpose of identifying candidate main effects beyond the
ones analysts may have specified is to provoke consideration of
erroneously omitted variables that are conceptually relevant and
pre-empt potential confounding and multicollinearity issues that
may arise.

6.2.1 Deriving Candidate Main Effects. In a query to infer a sta-
tistical model, analysts specify a single dependent variable and a
set of one or more IVs. After passing the checks described in 6.1,
the query’s independent variables are considered candidates. In
addition, Tisane derives three additional sets of candidate main
effects intended to control for confounding variables in the output
statistical model8. The first two sets below are from the “modified
disjunctive cause criterion” [66]:
8Tisane currently treats each input IV as a separate “exposure” variable for which to
identify confounders. Tisane then combines all confounders into one statistical model.

Figure 5.1: Example graph representation variables and relationships.
The graph representation of the variables and relationships from Listing 5.1. causes edges are labeled
with “causes.” associates_with edges are labeled with “assoc.” Dashed edges indicate nests_within
relationships, and dotted edges indicate has relationships.

In Tisane’s DSL, variables have relationships that fall into two broad categories: (1) conceptual

relationships that describe how variables relate theoretically and (2) data measurement relationships

that describe how the data was, or will be, collected. Below, we define each of the relationships

in Tisane’ DSL and describe how Tisane internally represents these relationships as a graph (as

illustrated in Figure 5.2). Figure 5.1 shows the graph representation constructed from the usage

scenario.

Tisane’s graph IR is a directed multigraph. Nodes represent variables, and directed edges

represent relationships between variables. Tisane internally uses a graph intermediate representation
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(IR) because graphs are widely used for both conceptual modeling and statistical analysis, two sets

of considerations that Tisane unifies.

Tisane’s graph IR differs from two types of graphs used in data analysis: causal DAGs and

path analysis diagrams. Unlike causal DAGs, Tisane’s graph IR allows for non-causal relationships,

moderating relationships (i.e., interaction effects), and data measurement relationships that are

necessary for inferring random effects. Unlike path analysis diagrams that allow edges to point to

other edges to represent interaction effects, Tisane represents interactions as separate nodes and

only allows nodes as endpoints for edges. These design decisions simplify our statistical model

inference algorithms and their implementation.

Conceptual relationships. Tisane’s DSL supports three conceptual relationships: causes, asso-

ciates with, and moderates. Analysts can express that a variable causes or is associated with

(but not directly causally related to) another variable. Variables associated with the dependent

variable, for example, may help explain the dependent variable even if the causal mechanism is

unknown. If analysts are aware of or suspect a causal relationship, they should use causes.

We chose to support both causal and associative relationships because formal causal DAGs are

difficult for domain experts to specify [SSY20; SV18; VDN+13], prior work has observed that re-

searchers already use informal graphs that contain associative relationships when reasoning about

their hypotheses and analyses [JBDM+22b], and GLMs/GLMMs can represent non-causal relation-

ships. Finally, analysts can also express interactions where one (or more) variable (the moderating

variables) moderates the effect of a moderated variable on another variable (the target variable).

Mediation relationships (where one variable influences another through a middle variable) are

another common conceptual relationship. Tisane does not provide a separate language construct for

mediation because mediations are expressible using two or more causal relationships. Furthermore,

mediation analyses require specific analyses, such as structural equation modeling [Hoy95], that are

out of Tisane’s scope.

In the graph IR, a causes relationship introduces a causal edge from one node, the cause, to

another node, the effect (Figure 5.2(a)). Because a variable cannot be both the cause and effect of

the same variable, any pair of nodes can only have one causal edge between them. Furthermore,

from a formal causal analysis perspective, associations may indicate the presence of a hidden, un-

observed variable that mediates the causal effect of a variable on another or that influences two or

more variables simultaneously. Thus, rather than inferring or requiring analysts to specify hidden

variables, which may be unknown and/or unmeasurable, the associates_with relationship in-

troduces two directed edges in opposing directions, representing the bidirectionality of association

(Figure 5.2(b)). A moderates relationship creates a new node that is eventually transformed into
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Figure 3: Code snippets of conceptual and data measurement relationships written in Tisane’s study design specification lan-
guage and their representation in Tisane’s graph IR. Variables are named with u for units, m for measures, and v for data
variables that can be either units or measures. All edges depicted are those that are added due to the relationship. In the
moderates example, we assume that m1 and m2 both belong to the same unit, and for simplicity, the attribution edge (labeled as
“has”) from m1 and m2’s unit is not shown. For more complex examples, see the supplemental materials.
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Figure 4: The graph representation of the variables and rela-
tionships from the usage scenario. causes edges are labeled
with “causes”. associates_with edges are labeled with “as-
soc.” Dashed edges indicate nests_within relationships, and
dotted edges indicate has relationships.

6 STATISTICAL MODEL INFERENCE:
INTERACTIVELY QUERYING THE GRAPH
IR

After specifying variable relationships, analysts can query Tisane
for a statistical model. Queries are constructed by specifying a study
design with a dependent variable (the value to be predicted) and a
set of independent variables (predictors). Tisane processes the query
and generates a statistical model in four phases: (1) preliminary
conceptual checks that validate the study design, (2) inference of
possible effects structures and family and link functions, (3) input
elicitation to disambiguate possible models, and (4) generation of a
record of decisions during disambiguation and the final executable
script. Given that the interactive process begins with an input
program using Tisane and outputs a script for fitting a GLM or
GLMM, we call this process interactive compilation.

6.1 Preliminary checks
At the beginning of processing a query, Tisane checks that every
input study design is well-formed. This involves two conceptual
correctness checks. First, every independent variable (IV) in the
study design must either cause or be associated with the dependent
variable (DV) directly or transitively. Second, the DVmust not cause
any of the IVs, since it would be conceptually invalid to explain a
cause from any of its effects. If any of the above checks fail, Tisane
issues a warning and halts execution. By using these two checks, the
Tisane compiler avoids technically correct statistical models that
have little to no conceptual grounding (DG1 - Conceptual knowledge).
If the checks pass, Tisane proceeds to the next phase.

6.2 Candidate statistical model generation
A GLM/GLMM is comprised of a model effects structure, family
function, and link function. The model effects structure may consist
of main, interaction, and random effects. Tisane utilizes variables’
conceptual relationships to infer candidate main and interaction
effects and data measurement relationships to infer random ef-
fects. Tisane infers family and link functions based on the data
type of the DV in the query. The candidate statistical models that
Tisane generates based on the graph and query seeds an interactive
disambiguation process.

The purpose of identifying candidate main effects beyond the
ones analysts may have specified is to provoke consideration of
erroneously omitted variables that are conceptually relevant and
pre-empt potential confounding and multicollinearity issues that
may arise.

6.2.1 Deriving Candidate Main Effects. In a query to infer a sta-
tistical model, analysts specify a single dependent variable and a
set of one or more IVs. After passing the checks described in 6.1,
the query’s independent variables are considered candidates. In
addition, Tisane derives three additional sets of candidate main
effects intended to control for confounding variables in the output
statistical model8. The first two sets below are from the “modified
disjunctive cause criterion” [66]:
8Tisane currently treats each input IV as a separate “exposure” variable for which to
identify confounders. Tisane then combines all confounders into one statistical model.

Figure 5.2: Code snippets of conceptual and data measurement relationships written
in Tisane’s DSL and their representation in Tisane’s graph IR.
Variables are named with u for units, m for measures, and v for data variables that can be either units or
measures. All edges depicted are those that are added due to the relationship. In the moderates example,
we assume that m1 and m2 both belong to the same unit, and for simplicity, the attribution edge (labeled
as “has”) from m1 and m2’s unit is not shown.

an interaction term in the model, introduces associative edges between the new interaction node

and the target (variable) node, creates associative edges between the moderated variable’s node and

the target node, and adds associative edges between the moderating variables’ nodes and the target

node if there is not a causal or associative edge already (Figure 5.2(c)). Furthermore, each interac-

tion node inherits the attribution edges from the nodes of the moderating variables that comprise

it. This means that every interaction node is also the attribute of at least one unit3. Appendix C

contains additional, more complex examples of graphs that contain moderates relationships.

Data measurement relationships. Study designs may have clusters of observations that need

to be modeled explicitly for external validity. For example, in a within-subjects experiment, par-

ticipants provide multiple observations for different conditions. An individual’s observations may

cluster together due to a hidden latent variable. Such clustering may be imperceptible during ex-

ploratory data visualization of a sample but can threaten external validity. GLMMs can mitigate

three common sources of clustering that arise during data collection [GH06; KKdL98; Coh88]:

• Hierarchies arise when one observational/experimental unit (e.g., adult) nests within another

observational/experimental unit (e.g., group). This means that each instance of the nested

unit belongs to one and only one nesting unit (many-to-one).

• Repeated measures introduce clustering of observations from the same unit instance (e.g.,

participant).

3In statistical terms, this means that within-level interactions have one unit while cross-level interactions may
have two or more units.
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• Non-nesting composition arises when overlapping attributes (e.g., stimuli, condition) de-

scribe the same observational/experimental unit (e.g., participant) [GH06].

The above sources of clustering pose three problems for analysts. First, analysts must have

significant statistical expertise to identify when data observations cluster. Second, they must know

how to mitigate these clusters in their models. Third, with this knowledge, analysts must figure

out how to express these types of clustering in their analytical tools. Even if analysts are not able

to identify clustered observations, they are knowledgeable about how data were collected.

Thus, Tisane addresses the three problems by (i) eliciting data measurement relationships from

analysts to infer clusters and (ii) formulating the maximal random effects structure, optimizing

for external validity (Subsection 5.3.2). Below, we describe language features for expressing data

measurement relationships.

Nesting relationships: Hierarchies Hierarchies arise when a unit (e.g., an adult) is nested

within another unit (e.g., an exercise group). Researchers may collect data with hierarchies to study

individual and group dynamics together or as a side effect of recruitment strategies. To express such

designs, Tisane provides the nests_within construct. Conceptually, nesting is strictly between

observational/experimental units, so Tisane type checks that the variables that nest are both Units.

In the graph IR, a nesting relationship is encoded as an edge between two unit nodes (Figure 5.2(d)).

There is one edge from the nested unit (e.g., adult) to the nesting unit (e.g., group) 4.

Frequency of measures: Repeated measures, Non-nesting composition When a measure

is declared through a unit, Tisane adds an attribution edge (“has”) from a unit node to a measure

node (Figure 5.2(e)). A unit’s measure can be taken one or more times in a study. The frequency of

measurement is useful for detecting repeated measures and non-nesting composition. In repeated

measures study designs, each unit provides multiple values of a measure, which are distinguished

by another variable, usually time. Non-nesting [GH06] composition arises when measures de-

scribing the same unit overlap. For example, HCI researchers studying input devices might design

them to utilize different senses (e.g., touch, sight, sound). Participants in the study may be ex-

posed to multiple different devices, which act as experimental conditions of senses. The conditions

are intrinsically tied to the devices, and participants can be described as having both conditions

and devices, which overlap with one another. Such study designs introduce dependencies between

observations [Cla73] and hence violate the assumption of independence that GLMs make.

When analysts declare Measures, they specify the frequency of the observation through the

number_of_instances parameter. This parameter accepts an integer, variable, a Tisane Exactly
4The GitHub repo contains a gallery of examples that include nesting relationships.
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operator, or a Tisane AtMost operator. By default, the parameter is set to one. The Exactly

operator represents the exact number of times a unit has a measure. The AtMost operator repre-

sents the maximum number of times a unit has a measure. Both operators are useful for specifying

that a measure’s frequency depends on another variable, which is expressible through the per

function. For example, participants may use two devices per condition assigned: device =

subject.nominal('Input device', number_of_instances=ts.Exactly(2)

.per(condition)). The per function uses the Tisane variable’s cardinality by default but can

instead use a data variable’s number_of_instances by specifying use_cardinality=False

as a parameter to per. Moreover, specifying a measure’s number_of_instances to be an inte-

ger is syntactic sugar for using the Exactly operator. Specifying a variable is syntactic sugar for

expressing ts.Exactly(1).per(variable).

To determine the presence of repeated measures or non-nesting composition, Tisane computes

the number_of_instances of measures and their relationship to other measures. Measures

that are declared with number_of_instances equal to one are considered to vary between-unit.

Measures that are declared with number_of_instances greater than one or a variable with

cardinality greater than one are considered to vary within-unit as repeated measures. If there are

instances of a measure per another measure sharing the same unit, the measures are non-nesting.

5.3.2 Statistical Model Derivation: Interactively Querying the Graph IR

After specifying variable relationships, analysts can query Tisane for a statistical model. Queries are

constructed by specifying a study design with a dependent variable (the value to be predicted) and

a set of independent variables (predictors). Tisane processes the query and generates a statistical

model in four phases: (1) preliminary conceptual checks that validate the study design, (2) inference

of possible effects structures and family and link functions, (3) input elicitation to disambiguate

possible models, and (4) generation of a final executable script, and a record of decisions during

disambiguation. Given that the interactive process begins with an input program using Tisane and

outputs a script for fitting a GLM or GLMM, we call this process interactive compilation.

Preliminary checks

At the beginning of processing a query, Tisane checks that every input study design is well-formed.

This involves two conceptual correctness checks. First, every independent variable (IV) in the study

design must either cause or be associated with the dependent variable (DV) directly or transitively.

Second, the DV must not cause any of the IVs, since it would be conceptually invalid to explain

a cause from any of its effects. If any of the above checks fail, Tisane issues a warning and halts

execution. By using these two checks, the Tisane compiler avoids technically correct statistical
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models that have little to no conceptual grounding (DG1 - Conceptual knowledge). If the checks

pass, Tisane proceeds to the next phase.

Candidate statistical model generation

A GLM/GLMM is comprised of a model effects structure, family function, and link function. The

model effects structure may consist of main, interaction, and random effects. Tisane utilizes vari-

ables’ conceptual relationships to infer candidate main and interaction effects and data measurement

relationships to infer random effects. Tisane infers family and link functions based on the data type

of the DV in the query. The candidate statistical models that Tisane generates, based on the graph

and query, seed an interactive disambiguation process.

The purpose of identifying candidate main effects beyond the ones analysts may have specified

is to provoke consideration of erroneously omitted variables that are conceptually relevant and

pre-empt potential confounding and multicollinearity issues that may arise.

Deriving Candidate Main Effects In a query to infer a statistical model, analysts specify

a single dependent variable and a set of one or more IVs. After passing the checks described

in Section 5.3.2, the query’s independent variables are considered candidates. In addition, Tisane

derives three additional sets of candidate main effects intended to control for confounding variables

in the output statistical model5. The first two sets below are from the “modified disjunctive cause

criterion” [Van19]:

• Causal parents. For each IV in the query, Tisane finds its causal parents (see Figure 5.3(a)).

• Possible causal omissions. Tisane looks to see if any other variables not included as

IVs cause the DV (see in Figure 5.3(b)). They are relevant to the DV but may have been

erroneously omitted.

• Possible confounding associations. For each IV, Tisane looks for variables that are as-

sociated with both the IV and the DV (see in Figure 5.3(c)). Because associations between

variables can have multiple underlying causal structures, Tisane recommends variables with

associative relationships with caution. Tisane issues a warning describing when not to include

such a variable in the GUI (see Figure C.3).

Using the above rules, Tisane suggests a set of variables that are likely confounders of the

variables of interest expressed in the query. There may be additional confounders due to unmeasured
5Tisane currently treats each input IV as a separate “exposure” variable for which to identify confounders. Tisane

then combines all confounders into one statistical model.
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Figure 5: Graphs demonstrating causal parents, possible causal omissions, and possible confounding associations. In graphs
(a) and (b) (left and middle), all edges are causal. Independent variables are marked “IV”, discovered candidate main effects
“CME”, dependent variables “DV”, and causal parents “CP”.

not suggest any interaction effects, preventing analysts from in-
cluding arbitrary interactions that may be conceptually unfounded
(DG1 - Conceptual knowledge, DG2 - Validity).

In the data clustering tab, Tisane shows analysts which random
effects it automatically includes based on the selected main and
interaction effects. Unlike main and interaction effects, Tisane au-
tomatically includes random effects in order to maximize model
generalizability (DG2 - Validity). If there is a random slope and
random intercept pertaining to the same unit, Tisane asks analysts
if they should be correlated or uncorrelated. We provide this option
because analysts may have relevant domain expertise to make this
decision (DG3 - Guidance and control). By default, Tisane correlates
the random slope and random intercept.

The final tab, data distribution, helps analysts examine their data
and select an initial family and link function to try. Appropriate
selection of family and link functions depends on the data type
of the dependent variable and the distribution of model residuals.
Therefore, the selection can only be assessed after choosing a family
and link function in the first place.

For an initial statistical model to consider, Tisane narrows the set
of family functions considered based on the declared data type of
variables (see 6.2.4) and lightweight viability checks, such as ensur-
ing that a Poisson distribution is only applicable for variables that
have nonnegative integer values. Tisane asks questions designed
to uncover more semantically meaningful data types (e.g., counts)
than are provided at variable declaration. Analysts without data
can answer these questions as they are planning their studies (DG4
- Statistical planning). For the selected family candidate, Tisane
automatically selects the default link function based on the defaults
for statsmodels [47] and pymer4 [25]. Analysts can then choose
a different link function, as long as it is supported9.

6.4 Output
There are two outputs to interactive compilation: (i) a log of GUI
choices and (ii) an executable modeling script. To increase trans-
parency of the authoring process, Tisane provides a log of user
selections in the GUI as documentation, which the analyst can in-
clude in pre-registrations, for example (DG4 - Statistical planning).
In the output script, Tisane includes code to fit the model and plot
residuals against fitted values in order to assess the appropriateness
9See supplemental material for a complete listing of Tisane’s supported family and
link function pairings.

of family and link functions, as is typical when examining family
and link functions. The output script also includes a comment ex-
plaining what to look for in the plots and an online resource for
further reading. Should analysts revise their choice of family and
link functions, they can re-generate a script through the Tisane
GUI.

7 CASE STUDIES WITH RESEARCHERS
Given Tisane’s novel focus on deriving and guiding analysts toward
valid statistical models, we assessed howTisane affects data analysis
practices in three case studies with researchers. The following
research questions guided the evaluation:

• RQ1 - Workflow How does Tisane’s programming and in-
teraction model affect how analysts author models? Specif-
ically, what does Tisane make noticeably easier or more
difficult when conducting an analysis?

• RQ2 - Cognitive fixation Where do researchers report
spending more time or attention when using Tisane? How
does this compare to their fixation during analyses typically?

• RQ3 - Future possibilitiesWhen do researchers imagine
using Tisane in future projects, if at all? What additional
support do researchers want from Tisane?

We recruited researchers through internal message boards and
individual contacts. We intentionally recruited researchers at differ-
ent stages of the research process—study planning, data analysis for
publication, and ongoing model building and maintenance. We be-
lieved this could help us more holistically evaluate Tisane’s impact
on data analysis. We met with researchers over Zoom (R1, R3) and
in person (R2) to discuss their use cases, observe them use Tisane
for the first time, and ask for open-ended feedback. We pointed
researchers to the Tisane tutorial for installation instructions and
examples but otherwise encouraged the researchers to work inde-
pendently. We answered any questions researchers had while using
Tisane. Each study session lasted approximately 2 hours. At the
end, two of the three researchers (R1, R3) said they planned to use
Tisane again over the next two months.

7.1 Case Study 1: Planning a new study
R1, a clinical psychology PhD student, had recently submitted a
paper and was planning a follow-up. R1 reported that she had never
taken a formal class on modeling techniques but taught herself for

Figure 5.3: Graphs demonstrating causal parents, possible causal omissions, and pos-
sible confounding associations.
In graphs (a) and (b) (left and middle), all edges are causal. Independent variables are marked “IV,”
discovered candidate main effects “CME,” dependent variables “DV,” and causal parents “CP.”

or unexpressed variables that are either not known or excluded from the graph. Tisane never

automatically includes the candidate main effects in the output statistical model. Analysts must

always specify a variable as an IV in the query or accept a suggestion (DG3 - Guidance and control).

If a graph only contains associates edges then the candidate main effects Tisane suggests are

those that are directly associated with both the DV and an IV. If a graph has only causal edges,

Tisane would suggest variables that directly cause the DV but were omitted from the query and

the causal parents of IVs in case the parents exert causal influence on the DV through the IV or

another variable that is not specified.

The total set of main effects, including variables the analyst has specified as IVs in their query

and candidate main effects, are used to derive candidate interaction effects and random effects,

which we discuss next.

Deriving Candidate Interaction Effects An interaction between variables means that the

effect of one variable (the moderated variable) on a target variable is moderated by another (non-

empty) set of variables (the moderating variables). Tisane’s DSL already provides a primitive,

moderates, to express interactions. As such, Tisane’s goal in suggesting candidate interaction

effects is to help analysts avoid omissions of conceptual relationships that are pertinent to an

analyst’s research questions or hypotheses (DG1 - Conceptual knowledge). Candidate interaction

effects are the interaction nodes whose (i) moderated and moderating variables include two or more

candidate main effects and (ii) target variable is the query’s DV.

Deriving Candidate Random Effects Random effects occur when there are clusters in the

data, which occur when we have repeated measures, nested hierarchies, or non-nesting composition

(as defined in Section 5.3.1). Tisane implements Barr et al.’s recommendations for specifying the

maximal random effects structure of linear mixed effects models for increasing the generalizability
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of statistical results [BLST13; Bar13].

To derive random effects, Tisane focuses on the data measurement edges in the graph IR.

Using the graph IR, Tisane identifies unit nodes, looks for any nesting edges among them, and

determines within- or between-subjects measures based on the frequency of observations for units.

From these, Tisane generates random intercepts of units for the unit’s measures that are between-

subjects as well as the unit’s measures that are within-subjects where each instance of the unit has

only one observation per value of another variable. Tisane generates random slopes of a unit and

its measure for all measures that are within-subjects where each instance of the unit has multiple

observations per value of another variable. For interaction effects, random slopes are included for

the largest subset of within-subjects variables (see [Bar13]). Tisane handles correlation of random

slopes and intercepts during disambiguation (Section 5.3.2). Maximal random effects may lead to

model convergence issues that analysts address by later removing or adding independent variables

and random effects. Nevertheless, starting with a maximal, valid model is important for ensuring

that future revisions are also valid (DG2 - Validity).

Table 5.2: The available family and link functions in Tisane.

Tisane generates code to fit models using statsmodels and pymer4. The package statsmodels supports
GLMs without mixed-effects and a wider variety of family and link function combinations. The package
pymer4 supports GLMs with mixed effects and has much more limited support for family and link functions.
As statsmodels and pymer add more support, Tisane can be extended.

Link functions (*default)

Family functions Generalized linear models without
mixed effects (statsmodels)

Generalized linear models with
mixed effects (pymer4)

Gaussian Identity*, Inverse, Log Identity*
Inverse Gaussian Identity, Inverse, Inverse Squared*, Log Inverse Squared*
Gamma Identity, Inverse*, Log Inverse*
Poisson Identity, Log*, Square Root Log*
Binomial Cauchy, CLogLog, Log, Logit*, Probit, Logit*
Negative Binomial Identity, Log*, Logit, Probit N/A
Tweedie Family Log*, Power N/A

Deriving Candidate Family and Link Functions The DV’s data type determines the set of

candidate family and link functions. For example, numeric variables cannot have binomial or multi-

nomial distributions. Similarly, nominal variables are not allowed to have Gaussian distributions.

Furthermore, each family has a set of possible link functions. For example, a Gaussian family distri-

bution may have an Identity, Log, or Square Root link function. The statistics literature documents

possible combinations of family and link functions for specific data types [NW72].

Tisane includes common family distributions as candidate families and their applicable link

96



functions. In its current implementation, Tisane relies on statsmodels [SP10] for GLMs and

pymer4 [Jol18] for GLMMs. As such, Tisane is limited to the family and link function pairings

implemented in these libraries. Table 5.2 lists the family and link functions these libraries currently

supports. As statsmodels’ and pymer4’s support for GLMs grows in the future, Tisane can be

extended.

Eliciting Analyst Input for Disambiguation

The disambiguation process provides an opportunity for analysts to explore the space of gener-

ated models based on their original query. Given our design considerations to prioritize conceptual

knowledge (DG1 - Conceptual knowledge) and give analysts guidance (DG3 - Guidance and con-

trol), we designed a GUI to scaffold analysts’ reasoning and elicit their input. For versatility, we

implemented Tisane’s GUI using Plotly Dash [Com23]. Analysts can either execute their Tisane

programs and use the GUI inside a Jupyter notebook (no additional widgets needed) or run their

Tisane programs in an IDE or terminal, in which case Tisane will open the GUI in a web browser.

Candidate statistical models are organized according to (i) independent variables (main effects

and interaction effects), (ii) data clustering (random effects), and (iii) data distribution (family and

link functions). In the main effects tab, Tisane asks analysts if they would like to include additional

or substitute main effects that Tisane infers to be conceptually relevant. In the interaction effects

tab, Tisane suggests moderating relationships to include but does not automatically include them

because analysts may not have specific hypotheses involving interactions (DG3 - Guidance and

control). If analysts do not specify any moderating relationships, Tisane does not suggest any inter-

action effects, preventing analysts from including arbitrary interactions that may be conceptually

unfounded (DG1 - Conceptual knowledge, DG2 - Validity).

In the data clustering tab, Tisane shows analysts which random effects it automatically includes

based on the selected main and interaction effects. Unlike main and interaction effects, Tisane

automatically includes random effects in order to maximize model generalizability (DG2 - Validity).

If there is a random slope and random intercept pertaining to the same unit, Tisane asks analysts

if they should be correlated or uncorrelated. We provide this option because analysts may have

relevant domain expertise to make this decision (DG3 - Guidance and control). By default, Tisane

correlates the random slope and random intercept.

The final tab, data distribution, helps analysts examine their data and select an initial family

and link function to try. Appropriate selection of family and link functions depends on the data

type of the dependent variable and the distribution of model residuals. Therefore, the selection can

only be assessed after choosing a family and link function in the first place.

For an initial statistical model to consider, Tisane narrows the set of family functions considered
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Figure 5.4: Example Tisane GUI for disambiguation.
Tisane asks analysts disambiguating questions about variables that are conceptually relevant and that an-
alysts may have overlooked in their query. (A) The left hand panel gives an overview of the model the
analyst is constructing. (B) Based on the variable relationships analysts specify, Tisane infers candidate
main effects that may be potential confounders. Tisane asks analysts if they would like to include these
variables, explaining in a tooltip (C) why the variable may be important to include. (D) Tisane only sug-
gests interaction effects if analysts specify moderating relationships in their specification. This way, Tisane
ensures that model structures are conceptually justifiable. (E) From the data measurement relationships
analysts provide, Tisane automatically infers and includes random effects to increase generalizability and
external validity of statistical findings. (F) Tisane assists analysts in choosing an initial family and link
function by asking them a series of questions about their dependent (e.g., Is the variable continuous or about
count data?). To help analysts answer these questions and verify their assumptions about the data, Tisane
shows a histogram of the dependent variable.

98



based on the declared data type of variables (see Section 5.3.2) and lightweight viability checks,

such as ensuring that a Poisson distribution is only applicable for variables that have nonnega-

tive integer values. Tisane asks questions designed to uncover more semantically meaningful data

types (e.g., counts) than are provided at variable declaration. Analysts without data can answer

these questions as they are planning their studies (DG4 - Statistical planning). For the selected

family candidate, Tisane automatically selects the default link function based on the defaults for

statsmodels [PSTsd20] and pymer4 [Jol18]. Analysts can then choose a different link function,

as long as it is supported.

Output

There are two outputs of the interactive compilation: (ii) an executable modeling script and (ii)

a log of GUI choices. To increase transparency of the authoring process, Tisane provides a log of

user selections in the GUI as documentation, which the analyst can include in pre-registrations, for

example (DG4 - Statistical planning). In the output script, Tisane includes code to fit the model

and plot residuals against fitted values in order to assess the appropriateness of family and link

functions, as is typical when examining family and link functions. The output script also includes a

comment explaining what to look for in the plots and an online resource for further reading. Should

analysts revise their choice of family and link functions, they can re-generate a script through the

Tisane GUI.

5.4 Initial Evaluation: Case Studies with Researchers

Given Tisane’s novel focus on deriving and guiding analysts toward valid statistical models, we

assessed how Tisane affects data analysis practices in three case studies with researchers. The

following research questions guided the evaluation:

• RQ1 - Workflow How does Tisane’s programming and interaction model affect how analysts

author models? Specifically, what does Tisane make noticeably easier or more difficult when

conducting an analysis?

• RQ2 - Cognitive fixation Where do researchers report spending more time or attention

when using Tisane? How does this compare to their fixation during analyses typically?

• RQ3 - Future possibilities When do researchers imagine using Tisane in future projects,

if at all? What additional support do researchers want from Tisane?

We recruited researchers through internal message boards and individual contacts. We intention-

ally recruited researchers at different stages of the research process—study planning, data analysis
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for publication, and ongoing model building and maintenance. We believed this could help us more

holistically evaluate Tisane’s impact on data analysis. We met with researchers over Zoom [R1, R3]

and in person [R2] to discuss their use cases, observe them use Tisane for the first time, and ask

for open-ended feedback. We pointed researchers to the Tisane tutorial for installation instructions

and examples but otherwise encouraged the researchers to work independently. We answered any

questions researchers had while using Tisane. Each study session lasted approximately 2 hours. At

the end, two of the three researchers [R1, R3] said they planned to use Tisane again over the next

two months.

5.4.1 Case Study 1: Planning a New Study

R1, a clinical psychology PhD student, had recently submitted a paper and was planning a follow-

up. R1 reported that she had never taken a formal class on modeling techniques but taught herself

for her last paper. Her general workflow involved consulting with and mirroring what others in her

research group did even if she did not completely understand why. R1 did not program often but

said she had “enough coding experience to understand this kind of...[sample program].” Although

familiar with Python, R1 preferred M+ [Mut23] and SPSS [SPS21]. She was interested in using

Tisane to brainstorm new studies and research questions.

Using Tisane. After installation, R1 read through one of the computational notebook examples

available in the Tisane GitHub repository. While reading, R1 asked clarifying questions about

the variable types and syntax. R1 explained that the Design class felt novel because she had

never seen the concept of a study design in data analysis code before. When the first two authors

explained that it was supposed to be the equivalent of the statement of a study design in a paper,

R1 remarked that usually, she “[kept] that in [her] head, which [she] probably shouldn’t” (RQ2 -

Cognitive fixation). Without a concrete data set, R1 preferred to walk through more examples

rather than author a script of her own.

While reading an example, R1 drew a parallel between the tabs in SPSS dialogs for specifying

models and the tabs in the Tisane GUI, noting that SPSS had a tab for control variables. R1 also

wanted the ability to distinguish between “control variables” and other independent variables in

the Tisane GUI. R1 explained that this would map more closely to how psychologists think about

analyses. Future work could incorporate additional language constructs, such as a new data type

for controls, for different groups of users (RQ3 - Future possibilities).

At the end of the study session, R1 remarked how Tisane “fills in a lot of the...gaps” in data

analysis (RQ1 - Workflow, RQ2 - Cognitive fixation). The first gap R1 discussed was the

programming gap between scientists and statistical tools. R1 believed that, for scientists who were

not comfortable with programming, “they should probably be running less complex models, or first
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learn how to code” even if the complex models would be most appropriate. The second gap R1

discussed was the statistical knowledge gap in tools. R1 explained that in her experience, R provides

support for more complex models but little guidance for what those models or statistical tests should

be, requiring “top down assumption[s].” Thus, to R1, Tisane bridged the gap between tools like

SPSS and R by requiring minimal programming and providing modeling support. Put another way,

Tisane bridged the gulf of execution [Nor13] for R1 that previous tools had not.

5.4.2 Case Study 2: Analyzing Data for a Paper Submission

R2, a computer science PhD student, had conducted a within-subjects study where 47 participants

used four versions of an app for one week each (four weeks total). The motivating research question

was how the different app designs led to psychological dissociation. Although R2 had expected

to collect multiple survey responses for each participant each day, they only had aggregate daily

self-report measures due to an error in the database management system. In the past, R2 reported

having extensively explored their data and consulting others, but for this paper, they had not

explored their data prior to fitting models because they felt more confident in their modeling skills.

For analyses, R2 preferred R but had general Python programming experience. Prior to using

Tisane, R2 had authored linear mixed effects models in R for their study. They were interested in

using Tisane to check their analyses prior to submitting their paper to CHI.

Using Tisane. R2 wrote their scripts by adapting an example from the Tisane GitHub repos-

itory. As R2 considered which conceptual relationships to add, they reasoned aloud about if they

should state causal or associative relationships between various measures and dissociation (RQ2

- Cognitive fixation). After some deliberation, they said, “I don’t feel comfortable [making a

causal statement],” and instead specified associates_with relationships. R1’s hesitation to as-

sert causal relationships confirms prior findings that specifying formal causal graphs is difficult

for domain researchers [SSY20; SV18; VDN+13] and our design choice to allow for association

edges. In addition, R2 was initially unsure about how to specify the number_of_instances for

their measures since their original study design was unbalanced. After asking for clarification about

number_of_instances, R2 declared all the measures with the parameter number_of_instances

set equal to date.

Next, R2 ran their script and used the Tisane GUI in a browser window. Based on Tisane’s

recommended family and link functions, R2 realized the models they had previously authored in R

using a Gaussian family were inappropriate. Due to a bug that we have since fixed, Tisane suggested

a Poisson family that R2 used to generate a script, but this was an invalid choice given that not

all dependent variable values were nonnegative integers. R2 explored other family distributions and

generated a new script using an Inverse Gaussian family. When executed, the second output script
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issued an error due to the model inference algorithm failing to converge. R2 made a note to look

into this model further on their own.

Once finished using Tisane, R2 commented that their analysis with Tisane was more streamlined

(RQ1 - Workflow) in contrast to their very first paper where they had tried “every single kind of

model that [they] could” until finding “the one that fits best,” even if it was “one that no one would

have heard of.” R2 also stated they would be interested in using Tisane earlier in their analysis

process in the future (RQ3 - Future possibilities). Based on their experience with Tisane, R2

questioned their previously authored linear mixed effects model, and said it was “unnerving” to

discover an issue so close to a deadline. At the same time, they expressed, “if it’s incorrect, I should

know before I submit.” A day after the study, R2 contacted the authors to inform them that they

had decided to update their analyses from linear mixed effects models to generalized linear mixed

effects models. They reported using the Inverse Gaussian family after visualizing and checking the

distribution of residuals with help from the output Tisane script. The Inverse Gaussian family was

appropriate because their dependent variable’s values were all nonnegative and displayed a slight

positive skew. R2’s experience with Tisane suggests that Tisane can help researchers catch errors

and lead them to re-examine their data, assumptions, and conclusions.

5.4.3 Case Study 3: Developing Models to Inform Future Models

Employed on a research team, R3 analyzes health data at the county, state, and national levels

to estimate health expenditure and inform public policy. R3 develops initial models that are used

to validate and generate estimates for larger, more comprehensive models. Due to the scale of

data and established collaborative workflows, R3 typically works in a terminal or RStudio through

a computing cluster and had very little experience with Python. Despite working on statistical

models every day, R3 described himself as “not...a great modeler.” R3 was interested in using

Tisane to determine what variables to include as random effects in a model.

Using Tisane. R3 used Tisane in a local Jupyter notebook as well as on his team’s cluster. R3

used the Tisane API overview reference material on GitHub to start writing his program, which

involved copying and pasting the functions with their type signatures and then modifying them to

match his dataset and incrementally running the program. The most common mistake R3 made

while authoring his Tisane program was to refer to variables using the string names in the dataset

(e.g., "year") instead of the variable’s alias (e.g., year_id), an idiom common in R but not in

Python.

While authoring his Tisane program, R3 found the number_of_instances parameter redun-

dant, especially because his data is always “square.” Every state_name in his data set had 30 rows

of data, corresponding to the year_ids 1990-2019. This is in contrast to R2, whose study design
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was unbalanced and resulted in variable numbers of observations per participant that needed to be

aggregated. Based on R3’s feedback, we added functionality to infer number_of_instances for

each unit, which analysts can inspect by printing the variable.

While giving open-ended feedback on Tisane, R3, similar to R1, liked how Tisane helped “fill

[the] gap in...[his] knowledge” (RQ2 - Cognitive fixation). Given the diversity of models R3

works with, R3 found Tisane’s focus on GLMs and GLMMs a “little limiting” and also wished to

make Tisane “run without...the mouse” in a script, as is typical in his workflow (RQ1 - Workflow).

Specifically, R3 described how he and his collaborators typically want to explore a space of models

and run them in parallel. Nevertheless, R3 foresaw using Tisane in three types of modeling tasks

common in his work: (i) exploratory modeling to determine if there are any interesting relationships

between variables, (ii) authoring and comparing multiple models for prediction, and (iii) working out

the precise model specification after identifying variables of interest (RQ3 - Future possibilities).

5.5 Discussion: System Changes and Takeaways

We fixed bugs and iterated on Tisane’s GUI based on feedback from researchers. The largest

change we made was to the data distributions tab. The data distributions tab we tested with

researchers visualized the dependent variables against simulated distributions of family functions

and included the results of the Shapiro-Wilk and D’Agostino and Pearson’s normality tests. All

three researchers reported becoming more aware of their data due to the visualizations. However,

researchers’ enthusiasm for the feature made us wary that visualizing the simulated data could

mislead less careful analysts to believe that family and link functions pertain to variable distributions

rather than the distributions of the model’s residuals. To avoid such errors while still helping

analysts become more aware of their data, we removed the simulated visualizations and normality

tests and instead provide questions about the semantic nature of the dependent variable collected,

as discussed in Section 5.3.2.

Overall, Tisane streamlines the analysis process (RQ1 - Workflow) in part because researchers

report formalizing their conceptual knowledge into statistical models more directly [R1, R2]. Al-

though Tisane does not eliminate the need for model revision, Tisane may scope the revisions

analysts consider to significant issues instead of details that may detract from the analysis goals

[R2]. Additionally, researchers reported a perceived shift in their attention from keeping track of

and analyzing all possible modeling paths to their research questions and data assumptions (RQ2

- Cognitive fixation) while planning a new study and analysis [R1] as well as while preparing

a research manuscript [R2]. Future adoption of Tisane may depend on the complexity of analyses

(RQ3 - Future possibilities) [R3]. For instance, Tisane may provide a streamlined alternative
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to false starts due to misspecifications for simpler analyses [R1, R2, R3]. For more complex models

and studies, Tisane may act more as a prototyping tool for statistical models, helping researchers

start at a reasonable model that they can then revise [R2, R3]. Regardless of analysis complexity,

externalizing analysts’ conceptual models in Tisane enhances documentation and communication of

science, potentially by enriching preregistered studies and analyses.

5.6 Summary of Contributions

Tisane embodies the hypothesis central to this dissertation: A DSL for expressing implicit concep-

tual knowledge and automated reasoning enable statistical non-experts to author valid statistical

models. In case studies of Tisane, we found that the DSL (Thesis Challenge 1: Explicating

domain knowledge) makes analysts more aware of their implicit domain knowledge. By deriving

statistical models from externalized conceptual models (Thesis Challenge 2: Representation

and automated reasoning), Tisane also fills in the statistical knowledge and programming gaps

analysts face when authoring statistical analyses. Tisane demonstrates how these two approaches

combined, can improve statistical model authoring for statistical non-experts.

Tisane was a collaboration with Audrey Seo, Jeffrey Heer, and René Just. The corresponding

paper was originally published and presented at ACM CHI 2022 [JSHJ22], where it received a Best

Paper Honorable Mention Award.
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Chapter 6

rTisane: Formalizing Conceptual Models

to Author Statistical Models

The previous chapter’s case studies (Section 5.4) highlighted Tisane’s potential as a tool for statis-

tical non-experts to author generalized linear models with or without mixed effects. To build on

Tisane’s strengths, we sought to understand the nuances of how statistical novices wish to articu-

late their implicit domain knowledge and the challenges they confront along the way. We started

with a lab study using Tisane to elicit statistical non-experts’ implicit definitions and assumptions

about DSL keywords (Section 6.1). The study also helped us identify opportunities to refine Ti-

sane’s interactivity. Based on study findings, we designed and evaluated rTisane, a system to

assist novices in formalizing their conceptual knowledge to author statistical models.

We implemented rTisane as an open-source R library based on suggestions from participants and

external research collaborators over the course of the previous projects. Analysts suggested that

tools like Tisane could benefit a wider audience of novice and expert data analysts if there was

an R implementation. An additional advantage of the R implementation was that it allowed us

to directly compare rTisane to a scaffolded workflow using widely used linear modeling libraries,

including lme4, in R (Section 6.4).

6.1 Elicitation Lab Study

We aimed to understand the ways in which statistical non-experts want to articulate their implicit

domain knowledge. Observations from this effort, as well as any identified challenges, would serve

as feedback to enhance Tisane. Thus, we used the initial release of Tisane [JSHJ22] to probe

into analysts’ internal processes. This approach helped us articulate design goals Section 6.2 for
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developing rTisane1.

6.1.1 Method

We recruited participants through a graduate-level quantitative research methods course as a con-

venience sample to control recent exposure to statistical concepts. Five computer science PhD

students participated.

The study consisted of two parts: (i) a take-home assignment and (ii) an in-lab session. The

take-home assignment asked participants to read a recently published CHI paper [WWL21]2 and

describe the paper’s research questions and hypotheses, the authors’ conceptual models, the study’s

design, and ways to analyze the data to answer the research questions. The assignment was designed

to ensure that participants engaged with the paper’s key ideas before coming into the lab. The

researcher reviewed each submission to prepare participant-specific questions for a semi-structured,

think-a-loud lab session.

At the start of the lab session, participants reviewed their homework submission to remind

themselves of the paper. The paper and participants’ homework responses remained available for

reference throughout the study. Then, participants completed three tasks: (i) declaring variables,

(ii) specifying study designs, and (iii) expressing conceptual models. For each task, participants

started with Tisane’s language constructs to express their intent and discussed their confusions,

how they understood each presented construct, and what they wanted to specify but could not (if

applicable). The researcher repeatedly reminded participants that the constructs presented were

prototype possibilities and that expressing their intentions was more important than using the

constructs or getting the syntax correct. Throughout, the researcher paid particular attention to

where Tisane broke down for participants and asked follow-up questions to probe deeper into why.

The researcher considered such breakdowns as openings into semantic mismatches between the

end-user and the DSL. Appendix D contains study materials.

We iteratively coded homework submissions, audio transcripts from the lab study sessions, and

lab study artifacts. We also consulted the researcher’s detailed notes from the lab sessions.

6.1.2 Key Observations

All participants demonstrated a working knowledge of the assigned paper’s motivating research

questions, study design, and general study procedure. We made four key observations about what

1For the lab study, we re-implemented Tisane (originally in Python) in R due to its widespread adoption in data
science and its use in the research methods course from which we recruited participants.

2We chose the specific paper because we believed its topic (i.e., empathetic biosignals) would be broadly approach-
able and the statistical methods used (i.e., generalized linear models) would be familiar with students enrolled in the
research methods course.
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and how statistical non-experts wanted to express their conceptual models: using varying degrees

of specificity, separating moderation from bivariate relationships, distinguishing between known

and hypothesized relationships, and considering alternative conceptual models. Participants also

suggested syntactic sugar options to improve the DSL’s usability. Based on these observations, we

derived design goals for designing rTisane (Section 6.2).

Participants express conceptual knowledge with varying details.

Contrary to the popular belief that higher levels of abstraction are better for end-users, we found

that statistical non-experts want to move up and down the ladder of abstraction when expressing

conceptual models.

When defining “causes,” P2 described “[Causes] is...like when we teach logic...it’s like implica-

tion, right?....So I’m saying if we are observing an emotion and...emotion observed can lead to a

change in emotional perspective.” P0, P1, and P3 contrasted a bidirectional relationship between

variables, formerly encapsulated in the associates_with construct in Tisane, to their implicit

understanding of “causes.” For instance, P1 stated “the most like, utilitarian definition by if A causes

B, then by changing A, I can change B whereas associates_with means that...if I can turn dial

A, B might not change.” In addition to differentiating between causal and associative relationships,

three participants [P0, P1, P3] provided statements of specifically how a variable influenced another

in the conceptual models submitted as homework. For example, P0 wrote, “Hearing a heartbeat

that seems to be aligned with visual cues makes someone feel more strongly what another person

is feeling” (emphasis added), specifying a positive influence of “hearting a heartbeat” on empathy.

These observations suggest that analysts have an intuitive understanding of causality but bluntly

stating that a variable causes another does not capture the richness or nuance of their implicit

domain knowledge. Additional annotations about how a variable influences another are necessary.

Participants find moderation difficult to separate from bivariate relationships.

Participants consistently found Tisane’s moderates construct difficult to understand [P0, P1, P2,

P3]. Participants expressed confusion about what moderation implied about the relationship be-

tween two variables. For example, P3 grappled with if “moderates” was shorthand for expressing

associative relationships between each independent variable and the dependent variable, how moder-

ation implies causal relationships, and if statistical and conceptual definitions of moderation differed

from each other: “[L]et’s say there’s two independent variables and one dependent variable. And

each of the [independent] variables individually is not correlated with the outcome. But if you put

them together, then the correlation appears....I mean, it’s sort of a philosophical question of whether,

like each of the ones individually causes [the dependent variable] in that case. But thinking from

107



a...statistical perspective, I think that’s a situation where you might be able to express...language

and experience level together cause lines of code but individually they don’t because no individual

correlation would appear there.” Therefore, a clear delineation between bivariate relationships and

partial statistical specifications of interaction terms is necessary.

Participants distinguish between known and suspected relationships.

Participants described relationships established in prior work as “assumptions” or “assertions” to

check separately from the key research questions that tested “suspected” relationships. P0 described

how “maybe we have to differentiate as to like the known [relationships] are kind of the things you’re

assuming there’s relationships between these things whereas the suspected...[are] the things kind of

like your research questions are saying like, ‘We think there’s this relationship but...it’s what we’re

testing for” (emphasis added). Similarly, P4 suggested that Tisane should warn end-users when

assumptions about known relationships are violated in a given data set: “I would also say that it

would be very handy to be able to say, kind of assert that language has no effect on the line of code.

And be warned if it’s not the case, like if your assertion is not...verified automatically with the

DSL, but warned...that while your assumption is not holding there is actually an effect, which could

be very handy on your study.” (emphasis added). The inability to indicate relationships that are

either known or suspected in Tisane may explain why analysts repeatedly preferred less technical

verbs, such as “influences” [P0] or “leads to” [P3]. For instance, P0 explained how she preferred

“influences” over “causes” because “I guess it’s like a level of sureness in it in which, like, ‘cause’

feels more confident in your answers than ‘influences” ’ (emphasis added). Providing a way to label

conceptual relationships as assumptions or the focus of the present analysis could make causes

and associates_with, the bivariate relationships in Tisane, more approachable.

Participants consider alternative conceptual structures in the face of ambiguity.

Participants grappled with what specific structures in a conceptual model meant. P1 and P3 de-

scribed how a bidirectional relationship between two variables were really due to hidden, confound-

ing variables causing both variables. P3 described how “in the real world...when these bidirectional

things happen, it means there’s sort of this middleman complex system. Or some like underlying

process of which [two variables are] both components...” Another participant, P2, wondered aloud

about how even what appears like a direct relationship, may actually be a chain of indirect or

mediated relationships at a lower granularity: “It’s like Google Maps. If you zoom out enough,

that arrow becomes a direct arrow.” These observations suggest that while participants can deeply

reflect on what could be happening between variables conceptually, they need help exploring and

figuring out which of these structures matches their implicit understanding.
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Participants expected more syntactic sugar for specifying data collection details.

While our focus was on improving the support for conceptual modeling, we made a few observations

about challenges analysts faced when specifying data collection details. First, analysts expected ex-

perimental conditions to be standalone concepts. In Tisane, experimental conditions can be specified

as a Measure of a Unit. Instead, P0 and P4 had separate conceptual categories for conditions

and measures in their mental models of study designs. P4 preferred a separate condition data type

currently unavailable in Tisane because the term “Measure” did not create a “bucket” appropriate for

conditions. Second, participants were interested in specifying trials, stimuli, and responses elicited

during each trial alongside participants: “I want to have a trial unit that is nested within trials,

which is nested within or maybe I could just have trial nested within Participant, but I’m not seeing

a way to clearly delineate or like to denote that” [P1]. Future work should more closely examine

and iterate on language constructs and idioms for representing data collection procedures.

6.2 Design Goals

Based on our lab study observations, we derived four design goals to more accurately capture

analysts’ implicit conceptual models:

• DG1 - Optional specificity : Analysts should be able to provide optional details about how

variables change in relation to each other (e.g., positive or negative changes in values) when

describing conceptual relationships.

• DG2 - Interactions as partial specifications: Analysts should annotate conceptual models with

interaction terms they want to include in an output statistical model.

• DG3 - Consideration of possibilities: When expressing ambiguous relationships, analysts

should have support in considering and picking among multiple possible conceptual struc-

tures.

• DG4 - Distinction between assumed and hypothesized : Analysts should be able to distinguish

between assumed and hypothesized relationships in their conceptual models.

We addressed these goals through new language constructs and a two-phase interactive com-

pilation process in rTisane. We also added DSL constructs to more easily capture study design

details.
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1 library(rTisane)

2

3 # Declare variables

4 # Person: Observational unit

5 person <- Unit(name = "person")

6 # Age: Continuous measure

7 age <- continuous(unit = person, "Age")

8 # Race, 5 categories:

9 # White, Black/African American, American Indian or Alaska Native, Asian or Pacific

Islander, Mixed Race

10 race <- categories(unit = person, "Race", cardinality = 5)

11 # Highest Education Completed, 5 ordered categories

12 edu <- categories(unit = person, "Education", order=list("Grade 12", "1 year of

college", "2 years of college", "4 years of college", "5+ years of college"))

13 # Current Employment Status, 3 categories: N/A, Works for wage, Self-employed

14 employ <- categories(unit=person, "Employment", cardinality=2)

15 # Sex, 2 categories: Male, Female

16 sex <- categories(unit = person, "Sex", cardinality = 2)

17 # Income: Continuous measure

18 income <- continuous(unit = person, "Income")

19

20 # Construct a conceptual model

21 cm <- ConceptualModel() %>%

22 assume(causes(age, income)) %>%

23 assume(causes(race, income)) %>%

24 hypothesize(relates(edu, income)) %>%

25 hypothesize(relates(age, edu)) %>%

26 hypothesize(relates(race, edu)) %>%

27 hypothesize(relates(sex, edu)) %>%

28 hypothesize(relates(employ, income)) %>%

29 hypothesize(causes(sex, income)) %>%

30 interacts(race, sex, dv = income) %>%

31 interacts(age, edu, dv = income)

32

33 # Query for a statistical model

34 query(conceptualModel=cm, iv=edu, dv=income)

Listing 6.1: Sample rTisane program adapted from P8’s script in the summative

evaluation. When declaring variables (lines 3-18), specifying cardinality is optional with data.

Executing this program opens up the conceptual model disambiguation interface in Figure 6.1.
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6.3 System Design and Implementation

rTisane consists of (i) a DSL for analysts to express their conceptual models and (ii) interactive

disambiguation steps to compile this high-level specification into a script fitting a statistical model.

So far, we have implemented rTisane for GLMs. Given the breadth of findings from the elic-

itation lab study, we narrowed the scope from Tisane in order to really focus on designing and

testing a set of language constructs core to conceptual modeling. There are two key challenges

to designing rTisane: (i) ensuring the DSL’s constructs can express analysts’ implicit conceptual

models accurately and (ii) balancing usability with rigor, allowing analysts to express their often

“fuzzy” conceptual assumptions without losing precision to derive a statistical model.

6.3.1 rTisane’s Domain-Specific Language

Like Tisane, analysts express variables, a conceptual model, and a query for a statistical model.

rTisane’s DSL prioritizes expressivity and usability

Declaring variables

Analysts can express two types of variables: Units and Measures. Units represent observational or

experimental units from which analysts collect data (see line 5 in Listing 6.1). A common unit is a

participant in a study, so rTisane provides syntactic sugar for constructing a Participant unit

directly. Participant is implemented as a wrapper for declaring a Unit.

Measures are attributes of Units collected in a dataset, so they are declared through a Unit.

Measures can be one of four types: continuous, unordered categories (i.e., nominal), ordered cate-

gories (i.e., ordinal), and counts (see lines 6-18 in Listing 6.1). rTisane provides syntactic sugar for

declaring Conditions as either unordered or ordered categories. Analysts declare unordered and

ordered categories through the categories function. Analysts can specify a variable is ordered by

passing a list to the order parameter. Otherwise, the variable is considered unordered. Analysts

can use continuous and count functions to declare continuous and count Measures.

Expressing a conceptual model

Once analysts have constructed variables, they can specify how these variables relate conceptually.

To do so, they construct a ConceptualModel and add variable relationships to it (lines 20-31

in Listing 6.1). The conceptual model is represented as a graph where the variables are nodes and

the relationships are edges.

There are two types of relationships: causes and relates. causes indicates a unidirectional

influence from a cause to an effect. causes introduces a directed edge from the cause node to the
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effect node. relates indicates that two variables are related but exactly how is ambiguous because

the analyst is uncertain about the direction of influence. relates introduces a bi-directional edge

between two variables. During a disambiguation step, rTisane will walk analysts through possible

graphical structures that a bi-directional edge could represent (DG3 - Consideration of possibilities).

To derive a statistical model, rTisane requires an analyst to assume a direction of influence.

Towards the design goal of DG1 - Optional specificity , rTisane allows analysts to optionally

specify when and then parameters in the causes and relates functions. There are four com-

parisons analysts can specify in when and then: increases (for continuous, ordered categories,

counts), decreases (for continuous, ordered categories, counts), equals (for any measure type),

and notEquals (for any measure type). Supporting optional specificity is designed to (i) make

the rTisane program an accurate document of analysts’ implicit assumptions and (ii) suggest ways

to resolve conceptual ambiguity during disambiguation (DG3 - Consideration of possibilities).

To add relationships to the conceptual model, analysts must assume or hypothesize a relation-

ship. This distinction supports how analysts distinguish between assumed, or strongly held, and

hypothesized, or more uncertain, relationships. rTisane requires analysts to make these explicit

distinctions (DG4 - Distinction between assumed and hypothesized) when adding conceptual rela-

tionships to a conceptual model. In addition to specifying a relationship type, analysts must either

assume or hypothesize a relationship.

Analysts can also specify interactions between two or more variables by declaring interacts.

Interactions are annotations to conceptual models and are added to the graph without assume

or hypothesize. Interactions provide additional information about existing relationships in the

conceptual model (DG2 - Interactions as partial specifications).

Querying for a statistical model

Analysts query rTisane for a statistical model based on the input conceptual model (lines 33-34

in Listing 6.1). The query asks for a statistical model to accurately estimate the average causal

effect (ACE) of the independent variable on the dependent variable. The querying process initiates

the interactive compilation process and results in an R script specifying and fitting a generalized

linear model. During interactive compilation, analysts engage in two loops to disambiguate their

(i) conceptual model and (ii) output statistical model.

6.3.2 Two-step Interactive Compilation

There are two phases to interactively compiling a conceptual model to a statistical model: (i)

conceptual model disambiguation and (ii) statistical model disambiguation. We added conceptual
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model disambiguation to address the need to explore possible conceptual structures for resolving

ambiguities introduced by relates (DG3 - Consideration of possibilities).

Conceptual Model Disambiguation

Figure 6.1: rTisane’s conceptual model disambiguation interface.
Upon executing the example program in Listing 6.1, analysts see the above interface. To answer the query and
derive a statistical model from a conceptual model, rTisane has analysts clarify and confirm their conceptual
model. (A) The side panel shows options for resolving ambiguities in the conceptual model due to relates
relationships (lines 24-28 in Listing 6.1). (B) rTisane checks and follows-up with questions about breaking
any cycles that hinder statistical model derivation. (C) The interface visualizes the underlying conceptual
graph, updating as analysts resolve ambiguities and break cycles. Upon hitting the continue button, analysts
see the statistical model disambiguation interface in Figure 6.2.

The goal of conceptual model disambiguation is to make analysts’ expressed conceptual mod-

els precise enough to derive a statistical model, achieving usability and rigor. Conceptual model

disambiguation involves breaking cycles in the conceptual model by (i) picking a direction for any

relates relationships and/or (ii) removing edges. Cycles are necessary to break because they

imply multiple different data generating processes that could lead to different statistical models. In

this way, conceptual model disambiguation can help analysts reflect on and clarify their implicit

assumptions.

To disambiguate conceptual models, rTisane uses a GUI. Figure 6.1 shows the conceptual model

disambiguation interface for the input program in Listing 6.1. The GUI shows a graph representing
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analysts’ conceptual models. If there are any relates relationships, rTisane suggests ways analysts

could assume a direction of influence. Additionally, rTisane suggests ways to break any cycles in

the conceptual model. As analysts make changes, the visible graph updates. The GUI also explains

why both these steps are necessary to derive a statistical model.

Once analysts have disambiguated their conceptual models, rTisane updates the internal graph

representation and derives a space of possible statistical models. To narrow this space of possible

statistical models down to one output statistical model, rTisane asks additional follow-up disam-

biguating questions.

Statistical model derivation and disambiguation

Figure 6.2: rTisane’s statistical model disambiguation interface.
rTisane asks analysts questions to narrow the space of possible statistical models to a final one. Statistical
model disambiguation is the final step in executing the program in Listing 6.1 and occurs after conceptual
model disambiguation (Figure 6.1).

To formulate possible statistical models, rTisane considers potential covariates to control for

confounding, interactions, and family and link functions.

To determine confounders, rTisane uses more recent recommendations from Cinelli, Forney, and

Pearl [CFP20]3. Cinelli et al.’s recommendations are based on a meta-analysis of studies examining

the impact of confounder selection based on graphical structures on statistical modeling accuracy.

By following Cinelli et al.’s recommendations, rTisane includes confounders that help assess the
3Tisane relied on Vanderweele’s recommendations for confounder selection [Van19], but in rTisane we opted for

more recent recommendations
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average causal effect of the query’s independent variable on the dependent variable as accurately as

possible.

rTisane searches for interactions analysts annotated in their conceptual models and suggests any

involving the query’s dependent variable. Otherwise, rTisane does not consider any interactions.

rTisane determines family and link functions based on the query’s dependent variable data

type. For queries involving continuous dependent variables, rTisane considers Gaussian, Inverse

Gaussian, and Gamma families. For counts, rTisane considers Poisson and Negative Binomial fam-

ilies. For ordered categories, rTisane considers Binomial, Multinomial, Gaussian, Inverse Gaussian,

and Gamma family functions. For unordered categories, rTisane considers Binomial and Multino-

mial family functions. rTisane outputs statistical models fit using the lme4 package in R, so rTisane

considers any family and link function combinations supported in lme4.

In the GUI, analysts have the option to remove any confounders or interactions based on their

domain knowledge. Based on prior experience or domain recommendations, analysts can also pick

a family and link function pair if multiple possibilities could apply.

6.4 Summative Evaluation: Controlled Lab Study

Two research questions motivated our evaluation of rTisane:

• RQ1 - Conceptual models What is the impact of rTisane on conceptual modeling?

• RQ2 - Statistical models How does rTisane impact the statistical models analysts imple-

ment? Specifically, how well do the statistical models analysts author on their own vs. with

rTisane fit the data? How are their formulations similar or different?

6.4.1 Study Design

We conducted a within-subjects (Tool support: rTisane vs. none) think-a-loud lab study that

consisted of four phases. We designed the study based on the assumption that conceptual modeling

is a helpful strategy when specifying statistical models. As a result, all participants completed the

phases in the following order.

• Phase 1: Warm up. We presented participants with the following open-ended research

question: “What aspects of an adult’s background and demographics are associated with

income?” We asked participants to specify a conceptual model including variables they thought

influenced income. This warm-up exercise helped to externalize and keep track of participants’

pre-conceived notions and assumptions prior to seeing a more restricted data schema.
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• Phase 2: Express conceptual models We presented participants with a data schema

describing a dataset from the U.S. Census Bureau. We then asked participants to specify a

conceptual model using only the available variables. At the end, we asked participants about

their experiences specifying their conceptual models in a brief survey and semi-structured

interview.

• Phase 3: Implement statistical models We asked participants to implement “a statistical

model that assesses the influence of variables [they] believe to be important (in the context of

additional potentially influential factors) on income,” relying on only their conceptual model.

We then asked participants about their experiences implementing statistical models through

a brief survey and semi-structured interview.

• Phase 4: Exit interview. The study concluded with a survey and semi-structured interview

where we asked participants about their experience in the study, reactions to using rTisane,

and connecting conceptual models to statistical models.

In order to assess the effect of tooling on conceptual models and the quality of statistical models,

we counterbalanced the order of tool support, or if participants completed each task with or without

rTisane first. The order of tool use was the same for Phase 2 and Phase 3. Within each of

Phase 2 and Phase 3, half the participants completed the task on their own (without rTisane) then

with rTisane. The other half started with rTisane and then did the task on their own. Prior to

using rTisane in Phases 2 and 3, participants followed a tutorial introducing the relevant language

constructs. Appendix E contains all the study materials.

Participants We recruited 13 data analysts on Upwork. We screened for participants who re-

ported having experience with authoring generalized linear models and using R at a three or higher

on a five-point scale. Participants also self-rated their data analysis experience at a median of eight

out of ten (min: 5, max: 10). Table 6.1 summarizes the participants’ backgrounds. All studies were

conducted over Zoom. Participants used rTisane on a remote controlled computer, so they did not

have to install it on their own. Each study lasted between two and three hours. Each participant

was compensated $25 per hour. We recorded participants’ screens, video, and audio throughout the

study. We then transcribed the audio and used detailed researcher notes for qualitative analyses.

6.4.2 Analysis Approach

Our analysis procedure consisted of two parts: (i) a thematic analysis of lab notes, transcripts, and

open-ended survey questions and (ii) an artifact analysis of conceptual models and statistical models

analysts authored with and without rTisane. For the conceptual models, we compared their form
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Table 6.1: Participants in summative evaluation.

Analysts came from a diversity of fields and job roles. All self-reported having familiarity with generalized
linear models, comfort programming in R, and significant data analysis experience.

ID Field Role

P1 Statistics Data Scientist
P2 Mechanical Engineering Graduate Student
P3 Data Science Research Assistant
P4 Political Science Data Science Educator
P5 Data Science Professor
P6 Biology Visiting Scientist
P7 Psychology Quantitative User Researcher
P8 Bioinformatics Researcher
P9 Data Analytics Senior Operations Data Analyst
P10 Automotive Engineering PhD Student
P11 Data Analysis Research Analyst
P12 Data Analytics Data Engineer
P13 Public Health Data Scientist

and content between tool support conditions. For the statistical models, we compared the overall

statistical approach, specific statistical model formulation, and rationale for analysis decisions and

conclusions. We also compared two goodness of fit measures between statistical models: AIC

and BIC. We iterated on the thematic analysis and artifact analysis separately at first and then

interpreted emergent observations across the two analyses.

One of the 13 participants dropped out part way through the study due to discomfort with

programming in front of the researchers. We analyzed the data we were able to collect from them.

6.4.3 Findings

RQ1: rTisane’s Impact on Conceptual Models

Key takeaway: rTisane scaffolded and productively constrained how analysts expressed

their conceptual models. As a result, analysts reflected on implicit domain assumptions

more deeply, considered new relationships, and felt they accurately externalized their

implicit assumptions.

The conceptual models analysts expressed on their own were diverse in form, meaning/content,

and complexity. The majority [P2, P4, P5, P8, P11, P13] invoked a graph-like structure. [P2,

P4, P8 used rTisane second; P5, P11, P13 used rTisane first]. Figure 6.3 illustrates four example

conceptual models from participants.4 Participants also described their conceptual models verbally

[P10], in natural language text [P6, P9], and as a timeline [P12]. P7, who used rTisane first, even

jumped to expressing their conceptual model in a statistical model. P12’s conceptual model was

particularly creative. His timeline featured variables ordered starting on the left by how much an
4An example conceptual model given in the task instructions may have biased analysts towards a graphical

structure.
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Table 6.2: Statistical model comparisons with and without rTisane.

Using rTisane, analysts authored statistical models that fit the data just as well or better than without rTisane.
For each participant, the better fitting statistical model scores are in bold. For P7, P8, and P13, there are no
bold scores because the statistical models without and with rTisane are identical. We did not observe a difference
in statistical model quality if participants used rTisane first except in the case of P11. When asked to author a
statistical model without rTisane, P11 took the output model from rTisane, deemed poor model fit based on the
AIC score, log transformed Income, and then fit the revised model as their own. To perform the log transform, P11
dropped observations where Income=0, explaining the marked difference in AIC/BIC scores between tool support
conditions, as indicated by a.
ID Tool Statistical model AIC (df) BIC (df)

P2 None lm(data$Income ∼ data$Employment + data$Age +
data$Race + data$Education + data$Sex +
data$Age*data$Employment +
data$Race*data$Employment +
data$Education*data$Employment +
data$Sex*data$Employment)

60327741 (37) 60328211 (37)

rTisane glm(formula=Income ∼ Employment,
family=gaussian(link=’identity’), data=data)

60781341 (4) 60781392 (4)

P4 None lm(Income ∼ Age + Education + Employment +
Race + Sex, data=data)

60358715 (15) 60358906 (15)

rTisane glm(formula=Income ∼ Education + Age +
Education*Sex + Employment + Race + Sex,
family=gaussian(link=’identity’), data=data)

60332919 (19) 60333161 (19)

P7 None lm(formula = Income ∼ Age + Race + Education
+ Employment + Sex, data = data)

60358715 (15) 60358906 (15)

rTisane glm(formula=Income ∼ Sex + Age + Employment +
Race + Education,
family=gaussian(link=’identity’), data=data)

60358715 (15) 60358906 (15)

P8 None lm(Income ∼ Sex*Race + Employment + Education
+ Race*Sex + Age, data = data)

60354038 (20) 60354292 (20)

rTisane glm(formula=Income ∼ Age + Race*Sex +
Employment + Age*Education,
family=gaussian(link=’identity’), data=data)

60351454 (24) 60351759 (24)

P9 None smf.OLS("Income ∼ Age + C(Race) +
C(Education) + C(Employment) + C(Sex)",
data=df)

60358715 (15) 60358906 (15)

rTisane glm(formula=Income ∼ Employment + Race + Sex
+ Education + Age,
family=gaussian(link=’identity’), data=data)

60358715 (15) 60358906 (15)

P10 None sm.OLS.from_formula("Income ∼ Age", data=df) 60876872 (3) 60876910 (3)
rTisane glm(formula=Income ∼ Employment + Sex +

Education + Age + Sex*Education,
family=gaussian(link=’identity’), data=data)

60339137 (14) 60339315 (14)

P11 None glm(log_income ∼ Employment + Race + Age +
Education + Sex, family = "gaussian",
data=data)

11741899a (15) 11742089a (15)

rTisane glm(formula=Income ∼ Employment + Race + Sex
+ Education + Age,
family=gaussian(link=’identity’), data=data)

60358715 (15) 60358906 (15)

P13 None glm(Income ∼ Age*factor(Race)*factor(Sex) +
factor(Education)*factor(Employment),
family="gaussian", data)

60331749 (39) 60332244 (39)

rTisane glm(formula=Income ∼ Employment +
Age*Race*Sex + Education*Employment +
Education, family=gaussian(link=’identity’),
data=data)

60331749 (39) 60332244 (39)
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Figure 6.3: Example conceptual models from participants without rTisane.
In the summative evaluation, participants expressed conceptual models without rTisane in a diversity of
formats, including in natural language, a timeline [P12], graphs [P2, P13], and directly as a statistical model
[P7].

individual could intervene upon them (Figure 6.3). P12’s conceptual model reiterates our finding

from the exploratory lab study that analysts want to capture nuanced meaning in a conceptual

model.

Ten participants involved all five independent variables from the dataset in their conceptual

models [P2, P3, P4, P5, P7, P8, P9, P11, P12, P13]. Two participants [P7, P13] also included

interactions between variables in their conceptual models. For instance, P13 specified a complex

conceptual model (Figure 6.3) where age, race, and sex interacted to cause an interaction between

education and employment, which then causes income.

Without rTisane, analysts found it difficult to express conceptual nuances.

In a survey and interview about their conceptual modeling experiences, participants shared that

they found it difficult to author conceptual models without tool support due to doubts about how

to communicate nuances in relationships [P3, 13] and concerns about mis-specifying relationships

beyond their domain knowledge [P5, P10]. P13 explained how they wanted to “[i]dentify how I

may weigh certain variables based on my general awareness and knowledge and overall weights of

each variable of how one may affect income more or less in various circumstances.” Similarly, P8

described specifying their conceptual model as a general “struggle” because “When doing it myself,

there are so many possibilities [of expression].” While rTisane is not designed to prevent mis-

specifications due to limited domain knowledge, we found that rTisane’s formalism removed the

need for analysts to come up with how to express their domain knowledge. They could focus on

expressing what they knew.
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rTisane encouraged analysts to think about their domains more deeply.

rTisane’s DSL deepened participants’ thinking [P3, P4, P7, P8, P10, P12, P13], giving them, as

P12 described, a structure to explore the “boundaries of their domain knowledge.” P3 explained

how even after specifying conceptual models on her own, rTisane’s four composable relationships

(assume/hypothesize x causes, relates) facilitated a deeper consideration of each relation-

ship and what she knew about each:

“Having to think about specifics like ‘Do we know the direction of the relationship’ or

‘What happens when a category increases/decreases’ actually helped me put my thoughts

out more clearly. I was able to think about more possible scenarios that could conflict

with my current assumption, which I was probably not doing [before]...In conclusion, I

want to say that looking at four possible ways to write a relationship made me think more

about each one of them.”

Similar to P3, P10 explained,

“My thinking was that before I didn’t have much idea about how can I link my variable

with the output [variable], and how this can interact. And so it may need some trial and

error... using this API, there are predefined functions, they are translated in R language,

cause or relates, it made my task easier. This translation was not on me anymore.”

Furthermore, P4 explained how the DSL’s support for optional specificity “encouraged [them] to

think about the directionality of my hypothesized relationships and for categorical variables to think

about the effect of each individual category.”

rTisane provided structure to express and inspect conceptual models.

Participants appreciated how rTisane structured their conceptual modeling process [P2, P4, P9,

P10, P11, P12, P13]. Participants found the rTisane DSL particularly helpful. P9 explained how

rTisane “ led [him] to think about the relationships first, and then whether they were what [he] was

hypothesizing” and how this process was the “reverse of the way [he] would think about it normally.”

Similarly, P4 explained how using the rTisane language constructs required them to think through

how different values of a variable (e.g., different categories) could change income. They observed

that their conceptual model with rTisane was “more specific” than without tool support. P4 further

explained how rTisane’s DSL “encouraged [them] to think about interactions, which [they] hadn’t

thought about before using rTisane.” Four participants said that rTisane generally made it easier

for them to specify their conceptual models [P4, P8, P10, P12]. P4 and P10 even believed that
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rTisane’s “formal structure made [conceptual modeling] more rigorous” [P4] and “more disciplined ”

[P10].

Participants relied on the conceptual disambiguation step to verify that what they expressed

in code accurately represented their implicit assumptions [P2, P8, P12]. P2, who had drawn a

conceptual model as a graph on his own prior to using rTisane, said, “The interactive process was

a good way to check that the graph came out the same way I was picturing it. It was helpful because

it is easier to look at than code.”

rTisane is expressive enough to capture analysts’ conceptual models accurately.

Importantly, rTisane scaffolded the conceptual modeling process without compromising expressivity.

Five participants reported that rTisane had no perceived influence on their conceptual models [P3,

P4, P5, P6, P11]. Indeed, three participants expressed identical conceptual models with and without

rTisane [P9, P11, P12]. Interestingly, for six participants, the conceptual models they authored with

rTisane were subgraphs of conceptual models authored without rTisane [P2, P3, P4, P5, P7, P8].

For P2, P3, P4, and P8, who used rTisane second, rTisane appeared to help focus them on the

specifics of variables and relationships of interest. P4 explained, “coding made it [the conceptual

model] more specific”. On the other hand, P5 and P7 expanded upon conceptual models specified

with rTisane when asked to subsequently express conceptual models on their own. For example, P7

authored a statistical model involving an interaction between variables in their rTisane conceptual

model when asked to specify a conceptual model on their own. It seems that just conceptual

modeling with rTisane helped P7 translate a conceptual model to a statistical model on his own.

Taking these observations together, we see that rTisane’s DSL can support both convergent and

divergent creative thinking about analysts’ domain knowledge.

RQ2: rTisane’s Impact on Statistical Models

Key takeaway: rTisane focused participants on their analysis goals over low-level de-

tails that bogged them down without tool support. rTisane helped analysts maintain

their analysis intent during statistical modeling. As a result, rTisane improved the sta-

tistical model authoring process, output statistical models, and communication about

statistical analyses.

On their own, three participants were not able to author a statistical model due to unfamiliarity

with statistical methods [P3], lack of time [P5], and reliance on visual analyses (ie.g., heatmaps,

scatterplots) [P12]. Of the remaining nine participants who completed the study, six participants

successfully authored linear regression models [P2, P4, P7, P8, P9, P10]. A seventh participant, P6,

started to author a logistic regression model with Race and Income but stopped before binarizing

121



either variable. Two participants, both of whom had just finished authoring statistical models with

rTisane, implemented GLMs [P11, P13]. P11 based their own statistical model (supposed to be

without tool support) on the rTisane output model script. After observing the model’s “AIC is

large, the residual is large”, P11 determined “I don’t think this [rTisane output model] is the right

fit.” So, they log-transformed the income variable and fit a new statistical model. P11’s experience

mirrors how we anticipate analysts will iteratively refine rTisane output statistical models in the

future.

Statistical models authored with rTisane fit the data just as well or better than statis-

tical models without rTisane.

Of the eight participants who successfully authored linear regression or generalized linear models

on their own, three implemented identical models with or without rTisane [P7, P9, P13]. Notably,

all three had authored the statistical model with rTisane first, suggesting that rTisane may have

biased their own modeling process. For another three participants [P4, P8, P10], their statistical

models with rTisane had lower AIC and BIC scores than the statistical models without rTisane. In

other words, rTisane models fit the data better or equally well for six out of eight participants. For

P11, the statistical model they authored without rTisane dropped some observations, so the models

are not directly comparable. For P2, the rTisane statistical model fit worse than his own statistical

model in part due to an observed change in his motivation for analysis, discussed below.

Without rTisane, analysts change their analysis intent during statistical modeling.

Without rTisane, participants [P2, P5, P6, P8, P10], adopted a more exploratory or data-focused

approach, changing their analysis goals while authoring statistical models. This theme is best

illustrated by P2, who started with a hypothesis that Occupation, or Employment, influenced

Income. His conceptual model in rTisane had the variables Education, Age, Race, and Sex causing

Occupation, which in turn, causes Income (Figure 6.3).

He started authoring statistical models with the intent to assess this hypothesis. On his own,

he first authored an ANOVA with Occupation as the IV and Income as the DV. Once he saw

that Occupation had a statistically significant influence on Income, he changed his analysis goal

to assessing if the variables causing Occupation would “be able to predict which occupation...And

then...the income from the occupation just because that’s how I like structured it [in the conceptual

model] initially.” However, P2 got stuck on how to author a model with Occupation as the outcome

variable because it was categorical, saying, “But the way I structured it in like the diagram. I’m

not sure exactly how to do that, because Occupation’s like categorical. Um, so I’m not sure like

exactly...how to model that.” This roadblock led P2 to consider an alternative “regression model with
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Income as like the output and then...all [the IVs] as terms and then just include the interactions

between Occupation and the terms that were pointing into it, and that would just be one model.”

In other words, P2 tried to author a single statistical model to assess if there was evidence for

his conceptual model. However, he was unaware of three key things. First, given his conceptual

model, he did not need to account for the other variables to estimate the influence of Occupation

on Income and assess his hypothesis. Second, adding interaction terms would not capture the

dependencies in the conceptual model. Third, P2 likely needs a structural equation model to assess

all the relationships in his conceptual model.

While it is well documented that statistical analysis is an iterative process [GW14; JBDM+22a]

and we saw evidence of this among participants [P5, P6, P10, P11, P12], what P2’s experience

exemplifies is how creative participants can be in convincing themselves that the statistical model

they authored not only assessed a particular hypothesis but could also arbitrate if their conceptual

models were supported by data. Furthermore, this suggests an opportunity for rTisane to support

a more iterative analysis process and help analysts author multiple models to assess an entire

conceptual model, not just the influence of a single independent variable on a dependent variable.

Without rTisane, analysts find statistical model formulation challenging.

Participants reported formulating and evaluating statistical models [P2, P3, P5, P8, P12], program-

ming [P6, P13], and preparing data [P7] as the major challenges to authoring statistical models

without rTisane. For example, P3 explained how

“There are a number of statistical tests and it gets confusing if I don’t practice it fre-

quently. This is what happened today, I haven’t worked on a hypothesis testing problem

recently and while I knew what libraries to go to, I was not sure which test to implement.”

Similarly, discussing the details of which covariates to include in a statistical model given a concep-

tual model, P8 explained how he was uncertain about which “upstream relationships,” or indirect

causes, to include in a statistical model. Without rTisane, he described statistical model authoring

as “It immediately feels harder doing it directly [without rTisane] like this” [P8].

rTisane focused analysts on their motivation for analysis.

In contrast, participants reported that rTisane guided them to think about their domains more

[P2, P12], lightened their burden in authoring statistical models [P10], and even promoted research

transparency [P5] and reproducibility [P4]. Furthermore, rTisane reinforced prior knowledge about

statistical methods [P6, P11] and helped participants learn more about GLMs [P4, P6, P7, P13].

P6, who had tried to author a logistic regression model on her own, explained how she could apply
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what she learned from using rTisane to future analyses: “I like that a multivariate linear regression

was used because this will inform any future data analysis...”

Analysts want to use rTisane for scientific communication, not just statistical author-

ing.

When asked how they might imagine using rTisane, participants identified two groups who would

benefit: analysts regardless of experience and less technical team members. First, participants

described how experienced and novice analysts alike would benefit from using rTisane [P2, P4, P9,

P10, P12]. Second, participants mentioned how conceptual models written using rTisane could

be used as boundary objects [SG89] in collaboration with less technical stakeholders [P8, P9]. P8

detailed how a conceptual model written using rTisane could be a communication tool, saying how

the “visual representation would play a role in a dialogue with the PI.” P8 went on to imagine how

he would like to use rTisane’s conceptual model to generate process diagrams in scientific papers.

In other words, how rTisane’s conceptual model could serve as an intermediate representation for

multiple kinds of outputs, not just statistical models.

6.4.4 Discussion

rTisane benefits analysts’ conceptual models and statistical models. rTisane’s DSL is expressive to

capture analysts’ diverse, nuanced conceptual models. In addition, the DSL’s language constructs

served as a starting point for statistical analysts to reflect on their domain knowledge. A consequence

of rTisane’s DSL and interactive compilation process is that some participants were able to author

statistical analyses that they were not able to author on their own. Others could author statistical

models that fit the data better than their own statistical models. These results highlight three key

insights in rTisane: the benefits of a formalism, balancing usability and rigor, and the potential for

re-purposing the intermediate representation.

While unbounded expression in natural language, especially in the era of ChatGPT [BMR+20], is

enticing, we found that participants found the prospect of expressing their conceptual models using

any means daunting. A key benefit of rTisane is that it introduces a formalism that productively

reduces the vast combinatorial space of how to express conceptual relationships into a finite set

that is expressible in the API. Furthermore, based on feedback from participants in the summative

evaluation, it seems that the DSL is effective because it is not only expressive but also usable, which

we attribute to our iterative language design process involving end-users. Moreover, learning to use

rTisane’s formalism required participants to reflect on their domain knowledge. This highlights how

a DSL structures the specification and can turn the process of specification into a reflective activity.

In this regard, the conceptual disambiguation step was critical. The graph visualization in the GUI
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helped analysts reflect on what they expressed and how to resolve any ambiguities present.

A key challenge in designing rTisane was balancing usability and rigor. On one hand, we wanted

to make it easy for analysts to express their conceptual models (usability), but we also wanted to

ensure that the conceptual models they expressed were amenable to formal causal reasoning to derive

statistical models (rigor). We were able to achieve both in rTisane by designing usable language

constructs in the DSL and increasing precision for rigor during disambiguation.

Finally, participants discussed the potential for using conceptual models to communicate with

less technical collaborators. Implicit in this recommendation is an acknowledgment of the useful-

ness of a conceptual model as an intermediate representation. While rTisane is focused on using

conceptual models to derive statistical models, there may be additional “backends” to target, such

as scientific model diagramming or planning study procedures.

6.4.5 Limitations

There are two key limitations to the summative evaluation: the background and number of ana-

lysts who participated. We recruited participants through the online freelance platform Upwork.

Participants came from a plurality of disciplines and were data analysis practitioners and educa-

tors (Table 6.1). We filtered for participants who self-reported familiarity with generalized linear

modeling and R. Yet, we observed many struggle with R syntax, suggesting that their self-reported

skills were inflated. While we anticipate that those with greater modeling and R familiarity will

more easily learn to use rTisane, the benefits more advanced analysts reap are likely to be different

than those we were able to observe. Furthermore, our sample size of 13 is limited. Nevertheless,

while analyzing transcripts and researcher notes, we did feel we reached convergence and saturation

of observations. Given these limitations, we believe that our findings are likely to generalize across

disciplines but not necessarily across analysis expertise.

6.4.6 Future Work on rTisane

While participants found rTisane helpful, they suggested four areas of improvement: (i) family and

link function selection, (ii) statistical model interpretation, (iii) iterative model revision, and (iv)

general system usability.

rTisane should suggest a specific pair of family and link functions and/or explain the “tradeoffs”

in choices in the future. In stark contrast to rTisane’s relatively high-level conceptual modeling

abstractions, rTisane required participants to select specific family and link functions, a relatively

low-level statistical modeling detail. Participants had difficulty picking family and link functions

[P2, P4, P5, P9, P10, P11]. P4 explained, “I didn’t understand the benefit or tradeoffs between
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different specifications. It wasn’t obvious to me how to create a linear OLS regression, or why I

would want to use a specification besides linear OLS.”

The input and output levels of abstraction should be commensurate. Because rTisane uses lme4

under the hood, the result of executing the output statistical modeling script is the output from

lme4. However, analysts expected the outputs to at least relate back to their conceptual model,

given that rTisane’s input language is at the conceptual level. For example, P8 found the output

from lme4 overwhelming, saying, “Looking at the summary() in R was too much to look at.” He

suggested a simple way to tie the results back to his input conceptual model: “Would be nice if you

could have the same visual representation with p-values/coefficients! ” Better matched input and

output abstractions would facilitate what analysts already try to do with statistical analyses they

author on their own.

Furthermore, future support for model iteration is crucial. Using rTisane, participants could

iterate on their conceptual models by adding or removing variables and relationships, but they could

not engage in a larger iteration loop with their output statistical model. For instance, P11 described

the rTisane output statistical model as “an initial or baseline model but follow-up evaluation of

the model is needed.” They wanted to “go back and tweak things a bit” about their statistical

model. Tools, like rTisane, should ensure that analysts maintain their analysis intents throughout

iteration—or at least document conceptual shifts—while discouraging or even preventing analysts

from questionable “data dredging” or HARKing [Ker98] practices. A first step may be to support

recommended workflows for statistical model development and refinement, such as Gelman et al.’s

Bayesian Workflow [GVS+20b].

Finally, ways to reduce the specification burden for analysts by providing syntactic sugar or even

removing the need to program at all are interesting avenues to explore. Participants found going

back and forth between code and an interface outside their IDE complicated and “clunky” [P12].

While part of this may have been in part due to the fact that participants were using rTisane on

a remote desktop, embedding rTisane in a notebook or incorporating participants’ syntactic sugar

suggestions (e.g. how to batch specify and add conceptual relationships), are promising first steps.

6.5 Discussion

Iteratively designing, developing, and evaluating Tisane’s key insight—to compile statistical models

from conceptual models—led to rTisane. A key step in designing rTisane was the exploratory lab

study that used Tisane as a probe. The exploratory lab study suggested the need to allow analysts

to express their conceptual models more granularly. Although obvious in hindsight, this finding was

counterintuitive at the time.
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Statistical non-experts engaged deeply with conceptual models about their domain and wanted

to be more detailed and specific when describing their conceptual models. In other words, while

the focus on the abstraction should be at the conceptual level, within that, analysts want to fluidly

move between levels of detail. Indeed, in the summative evaluation of rTisane, we saw that analysts

made use of all language constructs and reported finding them instrumental to deepening their

consideration of domain knowledge. Arguably, the conceptual modeling language constructs also

benefited the quality of statistical models output from rTisane. Using rTisane, analysts authored

statistical models that fit the data better than their own or authored identical statistical models

after using rTisane.

My experience iteratively designing, developing, and evaluating Tisane and rTisane shows how

abstractions can achieve usability and rigor by aligning with end-users’ content-focus and offering

them opportunities to delve into detailed specification. This gives end-users the agency to express

themselves more fully, transforming the programming task from strictly a means to an end to a

meaningful, reflective activity in itself.

6.6 Summary of Contributions

rTisane provides a DSL with language constructs for expressing conceptual models (Thesis Chal-

lenge 1: Explicating domain knowledge) and integrates a two-phase interactive disambiguation

process for compiling conceptual knowledge into statistical analysis code (Thesis Challenge 2:

Representation and automated reasoning). In a controlled lab study of rTisane, we found that

the DSL is expressive enough to capture analysts’ conceptual models accurately, eases the burden

of making their implicit assumptions explicit, and pushes analysts to think about their domains

more deeply. Using rTisane, analysts were able to author statistical models that fit the data just

as well as if not better than statistical models authored on their own. rTisane even helped analysts

who were not able to author statistical models on their own get to an output statistical model.

Analysts also reported that through the process, they learned about GLMs (Thesis Challenge

3: Statistical understanding). Together, these results demonstrate how DSLs and automated

reasoning together in fact do help statistical non-experts author valid statistical analyses that they

would not be able to author otherwise.

The exploratory study, rTisane design and implementation, and the summative evaluation are in

collaboration with Edward Misback, Jeffrey Heer, and René Just. The corresponding paper [JMHJ23]

is under submission and has not yet been published.
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Chapter 7

Conclusion

While statistical analysis has become more pervasive among analysts who are not statistical ex-

perts, the tools for conducting analyses have continued to require high statistical expertise. This

dissertation examines how to design and develop tools that not only lower the barriers for statisti-

cal non-experts but also provide guarantees about the validity of authored analyses. We introduce

three new tools, Tea, Tisane, and rTisane. All three provide DSLs for expressing implicit conceptual

knowledge. These high-level specifications are then compiled to statistical analysis code for Null

Hypothesis Significance Tests in Tea (Chapter 3), generalized linear models with or without mixed

effects in Tisane (Chapter 5), and generalized linear models without mixed effects in rTisane (Chap-

ter 6). Additionally, we develop a theory of hypothesis formalization that describes the cognitive

and operational steps involved in translating a conceptual research question into a statistical anal-

ysis implementation. Our theory of hypothesis formalization retrospectively validated our design in

Tea and directly inspired the design of Tisane and rTisane.

7.1 Discussion

This dissertation is centered on the thesis that two primary elements benefit statistical non-experts:

(i) programming abstractions designed to capture analysts’ implicit conceptual knowledge, data col-

lection details, and analysis intents, and (ii) the use of automated reasoning to determine statistical

analyses. Below, I discuss three key challenges related to this thesis and how the projects in this

dissertation address them.

7.1.1 Challenge 1: Make implicit domain knowledge explicit

With any programming language or DSL, end-users must learn a formalism to use it. Tea, Tisane,

and rTisane abstract the appropriate conceptual concerns implicitly involved in statistical analyses.
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The fact that an abstraction is high or low is less relevant than if the abstraction is at the right level

for end-users and their tasks. Indeed, a key insight that guided our design of rTisane (Chapter 6)

was that analysts wanted conceptual abstraction choices to express their domain knowledge with

varying degrees of detail that felt helpful and accurate to them (see Section 6.1).

When comparing the abstractions Tea and Tisane/rTisane provide, it is easy to see that the

conceptual relationships between variables were still largely implicit in Tea. An important takeaway

from the theory of hypothesis formalization was the importance of conceptual models, which are

present for statistical testing and modeling alike. Therefore, conceptual models should be a central

concern in designing programming abstractions for data analysis.

7.1.2 Challenge 2: Represent and reason about key statistical analysis decisions

A key tension when addressing the above challenge is balancing usability with rigor. That is, ab-

stractions that are usable to end-users may not be precise enough for formal reasoning. Therefore,

a key challenge in designing representations amenable to reasoning is in finding a “shared represen-

tation” [Hee19] between analysts and computational techniques. Based on Tea’s key insight that

statistical test selection can be reformulated as constraint satisfaction, we represented statistical

tests using logical constraints in a knowledge base. Using Tea’s DSL, analysts specify additional

constraints about their hypothesis and data, which helps Tea’s runtime system solve a system of

constraints to identify valid statistical tests. In Tisane and rTisane, the shared representation is the

conceptual model, represented as a graph. This representation made reasoning about linear model

formulations straightforward by applying causal reasoning techniques on a part of the graph.

In designing these shared representations, a temptation was to fit the DSL on top of a reasoning

approach that was straightforward. In this view, the DSL would be a thin wrapper around the

automated reasoning engine. For example, a very early prototype of Tisane used Answer Set

Programming (ASP) to define when specific confounders should appear in a generalized linear model.

In addition to being an inelegant way to represent linear model formulation rules when the statistics

community has converged on using graphs, this prototype required analysts to incrementally refine

their statistical models by interacting with the UNSAT core. This form of interactivity, though

interesting, obfuscated a major benefit of expressing conceptual models and disambiguating their

graph representations: giving analysts an opportunity to reflect on their implicit assumptions in an

open-ended way.

7.1.3 Challenge 3: Increase analysts’ statistical understanding

As we saw in the case studies with Tisane, providing abstractions and interactions with shared rep-

resentations for formal reasoning increases analysts’ awareness of their implicit assumptions, data,
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and analysis practices. By providing the appropriate abstractions, DSLs can make the specification

a useful form of documentation and the process of specifying a reflective activity. Both are especially

important for statistical analysis. Documentation can improve reproducibility. As we saw in the

summative evaluation (Section 6.4), reflection throughout analysis can also deepen domain thinking

and prevent drifting analysis goals that lead to questionable conclusions.

7.2 Impact

The most rewarding part of conducting the work in this dissertation has been to see real-world tool

usage. As of May 2023, Tea has been downloaded 15K times, and Tisane has been downloaded

12K times. All code is open source and available online. Over the last few years, I have also

enjoyed reading and answering flurries of emails where analysts, including many scientists and

social scientists, share anecdotes about how they have used (and sometimes failed to use) Tea and

Tisane. There are a couple success stories I want to highlight. First, an HCI researcher used Tisane

and caught an analysis bug prior to submitting and ultimately publishing a research paper at ACM

CHI [BZR+22]. Second, a collaborator at the Institute for Health Metrics and Evaluation used

Tisane to validate a model as part of a larger health policy research project, which was published

at a prestigious journal [JWC+22]. Real-world usage of Tea and Tisane thus far provides further

evidence in support of my thesis.

7.3 Limitations and Future Work

By addressing the core challenges—(i) explicating domain knowledge, (ii) representing and reasoning

about statistical analysis decisions, and (iii) promoting statistical understanding—the DSLs and

automated reasoning approaches in this dissertation make it possible for statistical non-experts

to more readily author valid analyses. There are important limitations of this work that suggest

promising future directions for further lowering the barriers to statistical analysis.

7.3.1 Support Interpretation of Statistical Results

While Tea, Tisane and rTisane effectively address the gulf of execution by compiling conceptual

knowledge, data collection details, and intents for analysis into statistical analyses, they fall short

of bridging the gulf of evaluation [Nor13]. Tisane and rTisane do not yet provide support for

analysts to interpret the results of their statistical models. Accurate interpretation of statistical

results is critical for follow-up analyses, such as model revisions, and communication. Future work

should address two key challenges: (i) statistical reporting designs to enhance the understanding
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of results 1 and (ii) support for navigating the consequences of the results, such as updates to

analysts’ conceptual models or the need to revise statistical models. A promising first step is to

directly answer a query in rTisane by providing the estimate of the independent variable’s influence

on the dependent variable, not just a statistical modeling script. Even this small change would

better address Thesis Challenge 3: Statistical understanding.

7.3.2 Guide Statistical Model Revision and Iteration

Analysts in the summative evaluation of rTisane (Section 6.4) started to iterate on rTisane’s out-

put statistical model and sought more support for model revision. There are two key challenges in

supporting a more iterative modeling workflow, such as a Bayesian Workflow [GVS+20a]: (i) rec-

ognizing when conceptual revisions are necessary and (ii) identifying and suggesting model changes

that maintain conceptual validity or, at the very least, quantify conceptual shifts. Furthermore, in

the model revision process, analysts may consider multiple alternatives. Addressing these challenges

will likely require reasoning from statistical models to conceptual models and may benefit from the

fact that Tisane and rTisane already generate a space of statistical models to seed statistical model

disambiguation.

7.3.3 Connect Statistical Testing and Modeling

A natural question arising from this dissertation is the choice between Tea and Tisane/rTisane for

analysts. Tea focuses on statistical testing, determining evidence for or against a specific claim, while

Tisane and rTisane emphasize statistical modeling, estimating variable influences in the presence

of other variables (e.g., confounders, mediators, etc.) However, statistical testing and modeling

are not mutually exclusive. Analysts often want to conduct tests after building models to answer

substantive questions as well as assess model fit. A compelling future direction is to enable analysts

to ask follow-up questions about specific estimates and effects from a statistical model, which may

itself prompt additional statistical modeling.

7.3.4 Design for Additional Aspects of Validity During Statistical Analysis

A goal of the tools in this thesis is to produce statistical analyses that are valid-by-design based

on an expressed analysis intent. We prioritized internal, external, and statistical conclusion valid-

ity. For instance, viewed through the Campbellian framework of validity [CS15; CCS02], Tisane

helps analysts avoid four common threats to external and statistical conclusion validity: (i) vio-

lation of statistical method assumptions, (ii) fishing for statistical results, (iii) not accounting for
1In unpublished work building on Tea, Reiden Chea, Annie Denton, and I started to explore the first challenge by

using a combination of textual explanations and visualizations. A next step is to evaluate the changes.
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the influence of specific units, and (iv) overlooking the influence of data collection procedures on

outcomes [CCS02]. A major barrier to designing for construct validity lies in having access to and

incorporating a knowledge base about any domain of analysis. Fortunately, recent advances in lan-

guage models, such as GPT-3 [BMR+20] and GPT-4, now provide one form of said knowledge base.

Therefore, future work should explore ways to leverage such technologies to help analysts assess the

reasonableness of proxies for constructs of interest, author conceptual models using proxies, compare

conceptual models that may exist in the wild, and validate the “reasonableness” of expressed con-

ceptual models. These directions to support construct validity will likely benefit analysts because

they amplify an existing benefit of rTisane: turning the conceptual model specification process into

a reflective activity.

7.3.5 Support the Larger Data Lifecycle

This thesis has focused on scenarios where analysts either have collected data or can articulate how

they will collect data. This simplification helped focus us on tools for automated statistical analysis

formulation. However, statistical analysis occurs late in the data lifecycle and is rarely separate

from other steps. The ability to draw reliable conclusions based on statistical analyses depends on

the configuration and quality of data available to analyze.

A limitation of this thesis is that it under-serves the bi-directional connection between data

collection and data analysis. While Tea, Tisane, and rTisane all use data collection details to

determine valid statistical analyses, they do not help analysts who may not know how to collect

their data but do know what kinds of conclusions they would like to reach. New tools are needed

to help analysts start with implications they would like to draw from analyses and then work

“backwards” to figure out what data their studies should collect, what proxies to randomize, how

to allocate observations, and how to handle data collection constraints. These tools require new

abstractions for expressing analysis goals or partial study designs as well as representations that reify

the connection between statistical analyses and experimental designs. Addressing these challenges

will create a tighter loop between data collection and analysis and promote improved planning and

practice in science.

Another limitation of this thesis is that it neglects how prior steps of the data lifecycle, such

as visual analysis, inform an analyst’s understanding of the domain. How might interfaces to

steps earlier in the data lifecycle elicit conceptual knowledge? Or what might interaction traces

tell us about the conceptual model an analyst is constructing? For instance, in the context of

visual analysis, what if interfaces could show the implied conceptual model based on a series of

visualization recommendation selections and user-provided annotations? Over time, interfaces and

techniques for eliciting and tracking conceptual models could help explain how highly skilled analysts
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arrive at different, even contradictory, statistical conclusions from the same research question and

data [SUM+18]. Furthermore, as analysts in the summative evaluation of rTisane noted, conceptual

models could facilitate communication between domain experts, statistical experts, and the public.

Investigating how to design interfaces for expressing, tracking, sharing, and debating conceptual

models could be one step towards improving reproducibility in science.

7.4 Closing Remarks

Statistical data analysis shapes science, policy, and business. Software tools for authoring analyses

are essential. However, these tools do not serve a long tail of users who are not statistical experts.

Statistical analysis software must help these analysts (i) express what they know about their domain,

the data, and their intents for analysis and (ii) guide them towards valid statistical analyses and

conclusions. This dissertation aims to enable people, regardless of statistical background, to reliably

analyze data to guide discovery and inform decision-making.
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Appendix A

Content Analysis Resources

This appendix provides greater detail describing the corpus of research publications we scraped and
analyzed to conduct our content analysis (Chapter 4, Section 4.2), our coding procedure, codebook
(Table A.1), and a summary for each paper.

A.1 Dataset Overview

To collect our corpus of research publications, we scraped the five venues’ proceedings using He-
lena [CMB18] and wrote additional scripts to randomly sample from each venue. The first author
read papers and included them in the sample if they used statistical analyses. We did not discrim-
inate between papers that used statistical analyses as a primary or secondary methodology. We
anticipated that authors would describe hypothesis formalization in both cases.

We coded a total of 2,989 paragraphs across 50 papers. Results were the most commonly
discussed topic. Approximately 31% of the paragraphs (in 50 papers) discussed interpretations of
statistical results, and 11% (in 37 papers) provided details about statistical results (e.g., parameter
estimates). Interpreted results often co-occurred with statistical results. 21% of paragraphs (in
40 papers) described data collection design (e.g., how the experiment was designed, how the data
were collected, etc.). Specifications of statistical models appeared in 19% of paragraphs (in 50
papers). 11% of paragraphs (in 45 papers) discussed proxy variables, or measures to quantify
abstract constructs (e.g., music enjoyment).

Researchers mentioned software used for statistical analysis in 3% of paragraphs (in 25 papers),
sometimes even specifying function names and parameters, a level of detail we did not expect to
find in publications. To our surprise, more papers mentioned software than included equations.
Only fifteen papers (JFE: 9, PS: 5, PNAS: 1) included equations in a total of 71 paragraphs. This
suggests that mathematical equations, though part of the hypothesis formalization process, are less
important to researchers than their tool-specific implementations.

A.2 Procedure

Based on exploratory rounds of open coding on an independent sample and noticeable differences
in writing structure and style across the venues, we read all sections of papers unlike McDonald
et al. [MSF19] who performed a similar content analysis of qualitative analysis methodologies and
focused on methods sections only. We also read the materials and methods section(s) included after
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references in papers from the PNAS and Nature venues, but otherwise we did not code any figures,
tables, and auxiliary materials.

The first and second author developed the codebook, analyzed five papers (one from each venue),
discussed agreements and disagreements, and iterated on the analysis protocol and codebook. The
first two authors then used the revised code book to analyze another two papers that were substan-
tially different in data analysis approach and writing style, discussed any disagreements, and refined
the codebook. The coders reached substantial agreement (IRR = .69 - .72) even before resolving
disagreements.

We coded the papers at the paragraph-level. We initially started by coding at the sentence-
level but found that paragraphs provided necessary context for accurately interpreting and coding
sentences, showed co-occurrence patterns, and were more expedient and anecdotally more reliable
to code. Nonetheless, throughout the coding process, we deliberated and discussed key sentences
in paragraphs that shaped the paper’s argumentation structure. The codebook contains such key
sentences.

After the first three authors coded, reviewed (for coding consistency), and discussed each paper,
we created “reorderable matrices” [Ber11] for each paper. The first three authors scrutinized the
matrices and cross-referenced the matrices and papers to identify a set of visual patterns. The
visual patterns indicated how researchers structured their scientific arguments (e.g., Pattern 1);
specified and summarized research questions and hypotheses, indicative of hypothesis refinement
(e.g., Pattern 2); decomposed their research questions and hypotheses from more general to more
specific ones, indicative of hypothesis refinement (e.g., Pattern 3); described their data collection
and cleaning procedures, sometimes also discussing specific proxies (e.g., Patterns 4, 5); mentioned
software and computational settings relevant to model implementation details (e.g., Pattern 6); and
discussed statistical specifications and results (e.g., Patterns 7).
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A.3 Codebook

Table A.1: The codebook for analyzing the content of research publications.

Codes Definitions and Examples %Freq.
Research Goals
Question or
statement of
unknown

Explicit, clear statement about an unknown phenomenon or an open-ended
question
“However, the ontogeny of holistic recollection is uncharted.” [NHNO19]

4.2

Predicted
outcomes

A clear conjecture of an outcome that does not specify a specific mathematical
relationship
“We hypothesized that the outward current is mainly carried by FA an-
ions...” [BCK+19]

6.8

Specific statistical
expectation

A conjecture specifying how observations will be related to one another mathe-
matically/statistically
“If this dependency measure (data-independent model) was significantly
greater than zero, this provided evidence for significant retrieval depen-
dency...” [NHNO19]

0.1

Specific objectives Statements about reaching objectives
“To assess the potential clinical relevance of the neo-development of a neuronal
network in prostate cancer, DCX+ cells were quantified in benign prostate hy-
perplasia...” [MTB+19]

2.6

Examination of
associations

A statement about examining a relationship between two or more concepts
“We next examine whether proxies for these factors appear to affect the trans-
actions costs in the secondary market for private equity stakes.” [NSVW19]

3.8

Data Sample Information
Study design and
protocol

Information about the procedures used or prototypes developed to collect the
data for analysis, such as any assays or experimental designs, including any
limitations (e.g, conditions/randomization, interventions, treatments)
“Before the experiment, we introduced the working principle of HandSee. Then
we tested the techniques one by one. For each technique, we first demonstrated
our interaction technique. After...” [YWV+19]

20.8

Initial data
sourcing

Information about the source, size, and characteristics of the data sample that
was collected or analyzed
“A total of 32 four-year-old children (15 female; age: M = 52.05 months, SD =
3.37) and 30 six-year-old children (17 female; age: M = 76.37 months; SD =
2.16) from the Philadelphia area participated in the study...” [NHNO19]

9.8

Data
filtering/sampling

Any criteria, procedures, and decisions to filter, remove, combine, and split
data for data quality, sub-analyses, or robustness (e.g., sampling from existing
datasets, removing outliers, etc.)
“As for the US data, we restrict our attention to sectors with ten or more
firms.” [GSY19]

6.4

Details about data
used for analysis

Any summary statistics (e.g., mean, standard deviation, distribution, etc.) and
other information describing the final data sample used for statistical analysis
“All subjects’ mean values were within 2.5 standard deviations from the group
mean; therefore, they were all included in the following analyses.” [PGSF19]

2.9

Statistical Analysis
Proxy Any information about how concepts are measured, including any limitations,

etc.; Can be established or new ways of measuring a construct
“Our definition of a price run-up is based on the industry value-weighted return.”
[GSY19]

12.3
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Equation Any mathematical equation, using symbols or sentences
“The absolute number of cells was calculated as ((number of Lin-eYFP+ cells ac-
quired cellularity of the organ)/number of live single cells acquired).” [MTB+19]

2.4

Statistical
specification

Describing a statistical model (e.g., linear regression), test (e.g. Student’s t-
test), or other procedure (e.g., contingency table) for analyzing the data
“Frequentist null-hypothesis significance testing was complemented with Bayesian
hypothesis testing, which quantified the evidence for the presence or absence of
effects...” [BLT+19]

18.7

Results
Statistical results Reporting the findings (not usage) of statistical analyses or models, refer to

specific quantified metrics (e.g., ratio, coefficient, correlation, etc.) with specific
values (e.g., numbers) or aspects of values (e.g., positive estimate, positive re-
lationship)
“In all experiments, when the entire sample size (N 24) was included in the
analyses, the main findings in each experiment remained significant for all color-
memory estimates (for paired comparisons, all ts > 2.74, ps .012, and BF10s
= 4.32; for three-group comparisons, all Fs > 7.07, ps .0021, and BF10s =
16.64).” [BLT+19]

10.7

Interpreted results What the statistical results mean conceptually
“This result supports the notion that the economies of scale...can induce larger
firms to hedge more extensively.” [HHZ19]

30.9

Causal model A causal model or mechanism (with a clear cause and effect) supported by the
data and statistical analysis results
“Here we show that GUN1 interacts with MORF2/RIP2 (herein only the name
MORF2 will be used) to affect the efficiency of editing for multiple sites in plastid
RNAs during...” [ZHC19]

0.2

Results from other
non-statistical
methods

Any results derived from methods other than statistics; could be from qualita-
tive, observational, or visual analyses
“Feeling deceived by Yelp, users (n=14) demanded a “full disclosure” (O120)
of the algorithm’s presence through the interface design by putting the filtered
reviews in “PLAIN SIGHT” (O120)...” [EVL+19]

7.3

Other outcomes Implications for what the results could lead to, future research
“Lastly, our work might fuel a new investigation into the uncanny valley of
haptics [4].” [GAL+19]

1.6

Limitations Any caveats or limitations about the statistical results
“We acknowledge that a limitation of the present study is that the sample size
may not be considered particularly large.” [HAPGNN+19]

1.1

Computation
Software Any mention of software used for data analysis

“We calculated BFs using the BayesFactor package...for the R software environ-
ment...” [BLT+19]

2.9

Computational
details

Any details about parameters or other settings used for data analysis
“For mean comparisons, we used the t-test BF function with default settings
(medium prior scale).” [BLT+19]

1.4
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A.4 Additional Findings: Contribution Types

We identified papers that presented empirical findings (41 papers), validated a prototype system (8
papers), or developed a new methodology (6 papers).

After reading and coding the papers, we re-read assigned each paper at least one of the fol-
lowing contribution types: Methodology, System or Technique, and Empirical Findings, and Other.
Methodological contributions introduce a new way of measuring a concept and may be in the form of
novel experimental designs, procedures, proxies, or other measures. System or technique contribu-
tions develop a prototype tool, which may be physical, biological, or chemical in nature. Empirical
findings contributions primarily show or explain a new phenomenon, which may involve developing
new causal models of a domain. Other contributions included replication studies and other results
that were unique to one or two papers in our sample, such as finding a new species in [DMC+19].
We identified these four contribution types through discussions and open coding.

We found that 41 papers that made empirical contributions describing or explaining a phe-
nomenon; eight papers that developed and evaluated physical or biological prototype tools; and
six papers that presented novel methodologies such as experimental protocols or measures. Ten
papers made various other contributions (e.g., replicating a previous study, finding a new species,
developing a design space, etc.). Tables A.2 through A.6 give an overview of contribution types in
each venue. We separated the tables by venue due to spacing constraints.

Papers contributing empirical findings consisted of ten papers from PNAS, ten from PS, eight
from JFE, eight from Nature, and five from CHI. Six of the eight system/technique contributions
came from CHI papers, with one each from Nature and PNAS. Out of the six methodology con-
tributions, three came from JFE papers, two from CHI, and one from PNAS. Thirteen papers fell
under multiple contribution types. Co-occurrences of two out of the three contribution types were
seen in a few of the CHI and PNAS papers, with system/technique contributions co-occurring with
either methodology or empirical findings. Co-occurrences in the PS and PNAS papers involved an
"Other" contribution type occurring most often with empirical findings. We identified only one JFE
paper with multiple contributions; in this case, methodology and empirical findings co-occurred. We
did not notice any obvious differences in paper content or structure due to research contribution
types, either within or across venues.
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A.5 Summaries of Papers Analyzed

Table A.2: Summary of CHI papers in our dataset.

Title Short summary Method System Empirical Other
ACM Conference on Human Factors in Computing Systems (CHI).
Detecting Visuo-Haptic
Mismatches in Virtual
Reality using the
Prediction Error
Negativity of
Event-Related Brain
Potentials [GAL+19]

The authors develop a new, more
objective metric for haptic immer-
sion. Through a user study, they
find that the new metric is able to
detect visuo-haptic mismatches in
VR.

X — — —

Engaging High School
Students in Cameroon
with Exam Practice
Quizzes via SMS and
WhatsApp [PGEE+19]

The researchers provide study sup-
port through quiz questions deliv-
ered through SMS or WhatsApp.
The researchers observe differences
in participation during a three-
week deployment.

— — X —

Springlets: Expressive,
Flexible and Silent
On-Skin Tactile
Interfaces [HWV+19]

Springlets is a mechano-tactile in-
terface for skin. The authors dis-
cuss its design, fabrication, user
perceptions, and possible applica-
tions.

— X — —

HandSee: Enabling Full
Hand Interaction on
Smartphones with Front
Camera-based Stereo
Vision [YWV+19]

The authors are able to detect a
phone user’s gripping and touching
interactions by using a mirror on
the front camera to obtain stereo
vision.

X X — X

User Attitudes towards
Algorithmic Opacity and
Transparency in Online
Reviewing
Platforms [EVL+19]

The authors ask three research
questions around how Yelp users
view algorithmic control/interven-
tion on the platform and how
increasing their awareness of it
through a system changes their per-
spectives and opinions about it.
The authors find that individuals
that are more invested in Yelp as
reviewers are more likely to defend
the platform’s algorithms.

— — X —

Slow Robots for
Unobtrusive Posture
Correction [SOR+19a]

The authors develop and evaluate
a system for automatically correct-
ing user posture. The authors con-
duct two empirical studies, one for-
mative and one evaluation. The
formative study identifies end user
perception of moving screens. The
evaluation study evaluates user ex-
perience and how often users cor-
rected their posture. The authors
use mixed methods, both quantita-
tive and qualitative/observational
in their studies.

— X — —
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May AI? Design Ideation
with Cooperative
Contextual
Bandits [KLHO19]

The authors develop a new tech-
nique and system for co-creation
with an AI. They evaluate the ef-
fects of the AI on a series of task
and creativity measures. They find
that the AI is helpful in some di-
mensions.

— X — —

The Effects of
Interruption Timings on
Autonomous
Height-Adjustable Desks
that Respond to Task
Changes [SOR+19b]

The authors investigate the most
opportune time to adjust desks for
improved ergonomics while min-
imizing interruption and annoy-
ance/negative experiences during
tasks. The authors find that chang-
ing desk height during task tran-
sition periods are the least dis-
ruptive, but end-users are dubi-
ous/have less trust in the au-
tomated adjustments. On the
other hand, adjusting desk height
after end-users have initiated a
new task/changed tasks causes in-
creased disruption but also in-
creased trust in the automated
desk.

— — X —

Caring for Vincent: A
Chatbot for Self-
compassion [LAvA+19]

The authors design a chatbot and
then see how taking care of or being
taken by the chatbot affects self-
compassion. The authors test this
hypothesis quantitatively and then
follow-up with additional analy-
ses about gender and tendency for
self-compassion. The authors fur-
ther contextualize these quantita-
tive results with qualitative anal-
yses about what and how partic-
ipants interact with the chatbots.
Synthesizing the quantitative and
qualitative results together, the au-
thors derive implications for de-
signing chatbots.

— X X —

FTVR in VR: Evaluating
3D Performance With a
Simulated Volumetric
Fish-Tank Virtual Reality
Display [FSD+19]

The authors test the perceptual
benefits and subjective preferences
of Stereo, NonStereo, and Monoc-
ular views in VR. They find that
Stereo has time and accuracy ben-
efits for a variety of tasks (Experi-
ment 3).

— X X —
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Table A.3: Summary of JFE papers in our dataset.

Title Short summary Method System Empirical Other
Journal of Financial Economics (JFE)
The relevance of broker
networks for information
diffusion in the stock
market [DMFKS19]

The authors find evidence for
the spread of information from
central brokers to their best
clients/investors to more periph-
eral clients/investors, which benefit
the central brokers through high
returns. There are three main
findings: (i) more central brokers
have higher returns, (ii) this can be
seen/validated in how informed in-
vestors trade, and (iii) information
affects “price discovery.”

— — X —

Do firms hedge with
foreign currency
derivatives for
employees? [HHZ19]

The authors present evidence of
a relationship between firms’ em-
ployee treatment scores and the
fraction of revenue hedged with
currency-based derivatives.

— — X —

The liquidity cost of
private equity
investments: Evidence
from secondary market
transactions [NSVW19]

The authors characterize how
transaction costs in the secondary
market for private equity stakes
are determined.

— — X —

Institutional investor
cliques and
governance [CKM19]

The authors examine how investors
coordinate to influence governance.

X — X —

Policy externalities and
banking
integration [Smo19]

The author investigates if and how
policies aimed at the banking sector
in one region have ripple effects in
other regions. The author identifies
“financial linkages” as the “trans-
mission channel” for these policies
to affect other areas.

— — X —

Do labor markets
discipline? Evidence from
RMBS bankers [GKM19]

The authors examine if and how
there were any disciplinary ac-
tions taken in the mortgage/hous-
ing banking industry after the
housing crisis of 2008. The authors
consider internal and external dis-
cipline (within firms and overall).
They find that there were no disci-
plinary measures taken.

— — X —

Firing the wrong workers:
Financing constraints and
labor
misallocation [CCM19a]

The authors develop a theoreti-
cal model for the impact of finan-
cial constraints on firing. They
find that firms first fire short-term
workers even though those workers
might provide longer-term value to
the firms.

X — — —

160



Time-varying ambiguity,
credit spreads, and the
levered equity
premium [CCM19b]

The authors propose a new proxy
of ambiguity that captures Knight-
ian uncertainty. They build a new
model using this proxy to explain
credit spreads and pricing of equity
and other financial metrics.

X — — —

The power of shareholder
votes: Evidence from
uncontested director
elections [ADP19]

The authors investigate the impact
of dissenting votes on directors who
are elected without contestation.
The authors find that shareholder
votes impact director’s career tra-
jectories negatively.

— — X —

Bubbles for Fama [GSY19] The authors test a widely held
theory/hypothesis about if stock
prices experience bubbles and can
be detected a priori. They find that
they cannot (cannot disprove hy-
pothesis) and find that sharp price
increases predict a probability of a
crash, and several other factors pre-
dict future crashes and returns.

— — X —
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Table A.4: Summary of Nature papers in our dataset.

Title Short summary Method System Empirical Other
Nature
VISTA is an acidic
pH-selective ligand for
PSGL-1 [JSP+19]

The authors find that V-domain
immunoglobulin suppressor of T
cell activation (VISTA) suppress T
cells in acidic pH environments, in-
cluding tumor microenvironments.

— — X —

A new species of Homo
from the Late Pleistocene
of the
Philippines [DMC+19]

The authors discover and analyze
bones that they conclude to be a
new species, which they call Homo
luzonensis.

— — — X

H+ transport is an
integral function of the
mitochondrial ADP/ATP
carrier [BCK+19]

The authors discover two transport
modes for ADP/ATP in mitochon-
dria that explain how energy con-
version occurs in mitochondria.

— — X —

Antarctic offshore
polynyas linked to
Southern Hemisphere
climate
anomalies [CWM+19]

Researchers find that polynyas,
“large openings in the winter sea ice
cover,” develop because of simulta-
neous upper-ocean preconditioning
and meteorological changes. They
predict that global warming will
continue to create conditions under
which polynyas occur.

— — X —

Metastatic-niche labelling
reveals parenchymal cells
with stem
features [ONK+19]

The authors present a system
where metastatic cancer cells
“stain” surrounding tissue cells so
that researchers can learn about
the local cancer environment. The
system may enable new discoveries.

— X — X

Multi-omics profiling of
mouse gastrulation at
single-cell
resolution [ACM+19]

The authors discover the process
by which three germ layers develop
and differentiate during gastrula-
tion.

— — X —

Dynamics and genomic
landscape of CD8+ T cells
undergoing hepatic
priming [BDSDL+19]

The authors identify a cellular re-
production mechanism leveraging
the liver (novel) that seems to
boost the immune system reactions
among HBV patients.

— — X X

Prediction and
observation of an
antiferromagnetic
topological
insulator [OKB+19]

The authors develop a theory about
a compound based on measure-
ments of its properties and then use
follow-up experiments to test the
theory. The authors employ simu-
lations to develop their theory and
then a series of experiments that
triangulate and test the theorized
properties.

— — X —
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Insect egg size and shape
evolve with ecology but
not developmental
rate [CDdME19]

The authors test three (main) hy-
potheses in the literature about the
factors influencing egg size among
insects. The authors find that ecol-
ogy (where an egg is laid) pre-
dicts egg size rather than pre-
viously believed-in universal con-
straints.

— — X X

Progenitors from the
central nervous system
drive neurogenesis in
cancer [MTB+19]

The authors identify the role of
nerves in cancer cell neurogenesis
and develop a new model of can-
cer cell neurogenesis in prostate tu-
mors. Their model incorporates
“crosstalk” between the central ner-
vous system and the prostate tu-
mors. They develop this model
through the identification of associ-
ations between cell groups (“lower-
level”) and in mice/humans (host).
Their model challenges existing
models of cancer.

— — X —
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Table A.5: Summary of PNAS papers in our dataset.

Title Short summary Method System Empirical Other
Proceedings of the National Academy of Sciences (PNAS)
GUN1 interacts with
MORF2 to regulate
plastid RNA editing
during retrograde
signaling [ZHC19]

The authors find that GUN1 and
MORF2 affect retrograde signaling
and plastid RNA-editing in chloro-
plasts in plant cells. These findings
also suggest that retrograde signal-
ing and plastid RNA editing may
be related processes.

— — X —

Brain-wide genetic
mapping identifies the
indusium griseum as a
prenatal target of
pharmacologically
unrelated psychostimu-
lants [FRG+19]

The authors find the effects of
psychostimulants on fetal develop-
ment. They find exposure can de-
lay specific kinds of cellular and re-
gional development that may im-
pact child behavior.

— — X —

Dysregulation of different
classes of tRNA fragments
in chronic lymphocytic
leukemia [VTB+19]

The authors find how two differ-
ent classes of RNAs are associated
with CLL, a type of leukemia most
prevalent among humans. Based
on their findings, the authors con-
clude that these classes of RNAs
may influence the development of
CLL.

— — X —

A critical role for
microglia in maintaining
vascular integrity in the
hypoxic spinal
cord [HM19]

Through a series of experiments,
the authors identify the respon-
se/roles of microglia in maintain-
ing the health of a hypoxic spinal
cord. The findings suggest mi-
croglia’s importance in Central
Nervous System vascular health.

— — X —

SDS22 selectively
recognizes and traps
metal-deficient inactive
PP1 [CMR+19]

The authors investigate how SDS22
can both inhibit and activate PP1
(an enzyme). The authors identify
a mechanism for SDS22 that ex-
plains its behavior.

— — X —

Monitoring of switches in
heterochromatin-induced
silencing shows incomplete
establishment and
developmental
instabilities [BHM19]

The authors were interested in
investigating what determines/ex-
plains the Position Effect Varie-
gation (PEV) in heterochromatin.
Through both mathematical mod-
eling and empirical studies, the re-
searchers find that gene silencing
that influences PEV occurs early in
embryogenesis but is not stable and
changes throughout development.

— — X —
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Extracellular RNA in a
single droplet of human
serum reflects physiologic
and disease
states [ZWY+19]

The authors develop and test a new
method for sequencing RNAs di-
rectly on cell serums using “comple-
mentary DNA (cDNA).” The au-
thors test the method/tool’s valid-
ity by examining how it can differ-
entiate among many different char-
acteristics in the data—sex, cancer,
etc.

— X X —

EBV infection is
associated with histone
bivalent switch
modifications in squamous
epithelial cells [LCD+19b]

Epstein-Barr virus (EBV) infection
occurs with some cancers. The au-
thors find evidence that suggests
that EBV infection may be related
to changes in epithelial cells.

— — X —

Targeting
pericyte-endothelial cell
crosstalk by circular
RNA-cPWWP2A
inhibition aggravates
diabetes-induced
microvascular
dysfunction [LGL+19]

The authors find a mechanism be-
tween two different cell “types” that
are affected by diabetes. The mech-
anism suggests new therapeutic in-
terventions for diabetes.

— — X X

Using attribution to
decode binding mechanism
in neural network models
for chemistry [MTM+19]

The authors develop a metric/pro-
cess for using “Attribution” as a
way to de-bias ML models for
learning causal relationships be-
tween molecules and binding be-
haviors.

X — X X
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Table A.6: Summary of PS papers in our dataset.

Title Short summary Method System Empirical Other
Psychological Science
Working Memory Has
Better Fidelity Than
Long-Term Memory: The
Fidelity Constraint Is Not
a General Property of
Memory After
All [BLT+19]

The authors replicate a previous
study that found that working
memory and long-term memory
had identical “fidelity.” The au-
thors find evidence to suggest that
this is not the case.

— — X X

Separate Contribution of
Striatum Volume and
Pitch Discrimination to
Individual Differences in
Music
Reward [HAPGNN+19]

The authors asked if people’s en-
joyment of music is related to
neurological structure and ability.
The authors find how enjoymen-
t/reward, structure, and ability are
related.

— — X —

Information Processing
Under Reward Versus
Under
Punishment [BSCN19]

The authors investigate how pun-
ishment and reward incentives af-
fect decision making. The authors
find that punishment incentives
negatively impact decision making.

— — X —

Paying Back People Who
Harmed Us but Not
People Who Helped Us:
Direct Negative
Reciprocity Precedes
Direct Positive
Reciprocity in Early
Development [CLD+19]

The authors asked when and how
children learn reciprocity, a key as-
pect of social coordination. They
find that direct negative reciprocity
(“paying back” harm) develops ear-
lier than positive reciprocity (“pay-
ing back” good), which is general-
ized rather than directed until chil-
dren learn social norms.

— — X —

Selection of Visual
Objects in Perception and
Working Memory One at
a Time [TPO+19]

The authors investigate how things
we have seen before (in visual work-
ing memory) affect how we per-
ceive what we see now (visual en-
vironment). The authors find that
humans pay attention to visual
aspects that are consistent with
memory (“memory-relevant”) and
that this processing occurs sequen-
tially in the presence of multiple vi-
sual stimuli.

— — X —

Variation in the µ-Opioid
Receptor Gene (OPRM1 )
Does Not Moderate
Social-Rejection
Sensitivity in
Humans [PAH+19]

Using a much larger sample size
and more experimental controls,
authors conduct a “conceptual
replication” of prior work examin-
ing the relationship between a gene
and feelings of social-rejection. The
authors also provide empirical evi-
dence/test a hypothesis extending
prior work.

— — X X
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APPENDIX A. CONTENT ANALYSIS RESOURCESA.6. ANNOTATED MATRICES FOR ALL PAPERSThe Ethical Perils of
Personal, Communal
Relations: A Language
Perspective [KGF19]

The authors find a link between
the warmth of language used and
dishonest/cheating behavior. The
authors use both controlled exper-
iments and a survey to test mecha-
nisms of this link.

— — X —

Visual Search for People
Among People [PGSF19]

The authors ask if there is a percep-
tual unit or mechanism that differ-
entiates between interacting dyads
and not interacting dyads. They
find evidence for some fundamen-
tal perceptual grouping unit that
makes grouping interacting/facing
dyads easier and individuating in-
teracting dyads harder.

— — X —

National Gross Domestic
Product, Science Interest,
and Science Achievement:
A Direct Replication and
Extension of the
Tucker-Drob, Cheung, and
Briley (2014)
Study [ZTDB19]

The authors replicate a previ-
ous study that found connections
among science interest, science
achievement, national wealth, and
other national characteristics with
more recent data.

— — X X

Development of Holistic
Episodic
Recollection [NHNO19]

The authors aim to provide fur-
ther detail about episodic mem-
ory development in humans. Holis-
tic episodic recollection is part of
episodic memory, but its develop-
ment is unknown. They find that
holistic recollection increased from
4 to adulthood, finding that 6-year-
olds exhibit memory retrieval that
is similar to adults despite being
less accurate.

— — X —

A.6 Annotated Matrices for All Papers

In the following pages are annotated matrices for each of the papers in our corpus.
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Appendix B

Hypothesis Formalization Lab Study
Materials

Materials for the lab study that helped us define hypothesis formalization (Section 4.3) are below.

B.1 Task 1: Hypothesis Generation

Scenario: You are a researcher leading a research team that can acquire any kind of data that you
can imagine collecting.

You are tasked to answer the following question: What aspects of an individual’s background
and demographics are associated with income after they have graduated from high school?

Task: Your job is to brainstorm at least three hypotheses that you might want to
test to answer the above question. You are encouraged to brainstorm more!

Instructions: Add your hypotheses below the horizontal line.

Please continually vocalize your thoughts aloud. The researcher will remind you to speak
up if they hear you go silent at any point during the task.

Feel free to express your hypotheses in any way you find helpful. You can draw, write, etc.

To draw: You may do so below, use your own materials, or use this Google Draw canvas.

221



B.2 Task 2: Conceptual Modeling

Scenario: Now, imagine your research staff informs you that they are able to collect data with
the data schema on the next page. Considering the data schema and looking at your hypotheses,
consider how you might go about testing one or more of your previously defined hypotheses. You
may revise your hypotheses to incorporate one or more of the factors in the data schema.

Task: Develop a conceptual model for how to go about testing one or more of your
hypotheses.

A conceptual model summarizes the process by which some outcome occurs. A conceptual model
specifies the factors you think influence an outcome, what factors you think do not influence an
outcome, and how those factors might interact to give rise to the outcome.

For example, a conceptual model for plant growth might communicate the following: Sunlight
directly influences plant growth. Water directly influences plant growth. Both sunlight and water are
necessary for plant growth. Plant-owner love indirectly influences plant growth because love affects
plant placement, which might affect sunlight.

A conceptual model can be a diagram or a list of statements.

In your conceptual model, please feel free to include any other variables not in-
cluded in the data schema.

Instructions: Add your conceptual model below the horizontal line (after the data schema).
Please just make sure it is clear which hypothesis/es you are testing.

As before, please continually vocalize your thoughts aloud. The researcher will remind
you to speak up if they hear you go silent at any point during the task.

** For this section, please share your screen with me.**

• Participant: numeric

• Race: categorical

– {White, Black, etc.}

• Sex: categorical

– {Male, Female}

• Age: numeric

• State: categorical

– {Alabama, Arizona, etc.}
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• Community: categorical

– {Suburban, Urban, Rural}

• Highest Edu Completed: categorical

– {High school, Some college, Two-year college, etc.}

• Current Student Status: categorical

– {Yes, No}

• Major: categorical

– {Economics, Education, etc.}

• Employment: categorical

– {Disabled, Full-time, Not employed, etc.}

• Marital Status: categorical

– {Divorced, Living with a partner, etc.}

• Housing: categorical

– {Live in a dorm, Live with parents, etc.}

• Annual Income: categorical

– {Less than $10K, $10K to under $20K, $20K to under $30K, etc.}

Feel free to express your conceptual model in any way you find helpful. You can draw, write, etc.

To draw: You may do so below or use this Google Draw canvas.
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B.3 Task 3: Statisitcal Model Specification

Scenario: Good news! Your research staff was able to collect the following dataset, consistent with
the data schema you saw before.

The dataset is here: <add URL here>

Task: Without considering implementation, precisely specify a statistical model/-
analysis (e.g., model, parameters, etc.) that could generate the data and help you test
one or more of your hypotheses.

Your specification should be as precise as possible and should include which statistical model/s,
evaluation metric/s, and any necessary interpretation information you plan to use to interpret the
statistical results. Your specification should be precise enough that you could hand it to your re-
search staff and they would have no trouble implementing the analysis.

You are welcome to use anything (e.g., reference materials, visualizations, etc.) to help you
write your specification.

Instructions:
** For this section, please share your screen with me.**

Add your specification below the horizontal line.

As before, please also continually vocalize your thoughts aloud. The researcher will
remind you to speak up if they hear you go silent at any point during the task.

Feel free to precisely specify the statistical analysis in any way you find helpful. You can draw,
write, etc.

To draw: You may do so below or use this Google Draw canvas.
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B.4 Take-Home Analysis Instructions

Scenario: Your research staff needs your help implementing the statistical analysis you specified
beforehand. Using your implementation, your research staff will go out, collect a fresh dataset
containing the same exact variables, and then execute your statistical analysis on the fresh data.

The dataset from before is here: <URL>

Task: Use the data and any software tool/s of your choice to implement your
statistical analysis.

Once you are finished,

1. please add any artifacts you create, including scripts, visualizations, statistical results, etc. to
this folder, and

2. complete the survey <link to survey>. Your ID# is P##.

Please make sure to complete the analysis before answering the survey.
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Appendix C

Tisane: Additional Examples

C.1 Additional Examples of Graphs That May Be Constructed
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(a) m1.moderates(u1, on=m2) (b) m1.moderates(m2, on=m3) (c) m1.moderates(m2, on=m3)

Figure C.1: More complex examples of moderates written in Tisane’s DSL and their
representation in Tisane’s graph IR.
Variables are named with u for units, m for measures, and v for data variables that can be either units or
measures. Black edges have been added due to the moderates relationship. Gray edges already existed in
the graph. In (a), only m1 is a measure, whose unit is u2, so u1*m1 inherits an attribution edge only from
u2. In (b), m1 and m2 are measures, with units u1 and u2 respectively, so m1*m2 inherits attribution edges
from both u1 and u2. In (c), measures m1 and m2 share a unit, u, and m1*m2 inherits only one attribution
edge from u.
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Figure C.2: A graph demonstrating an edge case for candidate main effect identifica-
tion, where the graph contains only associative edges.
Candidate main effects are labeled “CME”, independent variables “IV”, and dependent variables “DV”. Vari-
ables that are none of the above are left unlabeled. When a graph contains only associative edges, candidate
main effects are identified as those that are either associated with the DV or are associated with both the
IV and the DV. (Note that the graph could contain additional edges/nodes other than the ones pictured,
but the additional edges would not violate any of the initial checks that Tisane makes on the graph IR.)

C.2 Cautioning Analysts About Adding Certain Kinds of Variables

Figure C.3: An example of the warning text given for potential confounding associa-
tions.
When analysts hover over the “Warning” badge, a tooltip pops up that explains that they should be careful
about adding this variable. Associative relationships may in actuality be causal relationships, and if in fact
pounds_lost caused age, then adding age would invalidate the model.
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Appendix D

Elicitation Lab Study Materials

Materials for the elicitation lab study described in Section 6.1 follow. All materials were presented
in editable Markdown files. Each section below was in a separate file.

D.1 Task 1: Variables

You identified the following constructs and proxies.
For Conceptual Hypothesis 1 (CH1): <Fill in based on homework response: construct: proxy>
For CH2: <Fill in based on homework response: construct: proxy>
For CH3: <Fill in based on homework response: construct: proxy>
For CH4: <Fill in based on homework response: construct: proxy>

Current idea

The language constructs presented here and for the remainder of the study are an initial set of
ideas we have. We are actively seeking to add, remove, and adapt the language.

Variables can be Units, Measures, or SetUp variables.

1. Units

A data variable that can have attributes. For example, if you have programmers in
your dataset. Each programmer has a a level of experience, programming language they
write, an IDE they were assigned (e.g., a condition), etc. Then, programmer variable
can be a Unit. In statistics, a Unit can represent either an observational or experimental
unit.

A Unit has the following properties:

• name (str): The name of the variable. If you have data, this should correspond to the
column’s name. The dataset must be in long format.

• cardinality (int): The number of unique values of the variable. cardinality is optional only
if you have a data set. If specified, the language will check that the cardinality is correct if
you include data in the design. If left unspecified, and data is available, the language will try
to calculate the cardinality.

229

https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Statistical_unit


For example:
# To specify that there are 40 unique participants
# Without data
programmer <- Unit("participant", 40)
# With data
programmer <- Unit("participant") # cardinality is optional

2. Measures: Nominal, Ordinal, and Numeric

Measures are variables that describe a Unit. Measures can be nominal, ordinal, or
numeric. For example, if you have people in your dataset, and each programmer has an
eye color, height, age, experience level in school, etc., then eye color, height, age, and
experience level are measures of the programmer unit.

2a. Nominal Measure

Represents a categorical variable whose categories are not ordered. You must specify a
nominal measure through the Unit the Measure belongs to.

A Nominal Measure has the following properties:

• unit (Unit): The unit that the measure is of.

• name (str): The name of the categorical variable. If you have data, this should correspond
to the column’s name in the data.

• cardinality (int, optional): The number of unique values for the variable.

For example:
# To specify that IDE is measured for each programmer unit.
# Without data, the cardinality must be specified
ide <- nominal(programmer, "ide", 5)
# With data, the cardinality is inferred
ide <- nominal(programmer, "ide")

2b. Ordinal Measure

Represents a categorical variable whose categories are ordered. You must specify an
ordinal measure through the Unit the Measure belongs to.

An Ordinal Measure has the following properties:

• unit (Unit): The unit that the measure is of.

• name (str): The name of the ordinal variable. If you have data, this should be the column
name in the data.

• order (list): The ordering of the categories of the variable.
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For example:
# To specify that experience level is measured for each programmer unit.
experience_level <- ordinal(programmer, "experience level",

["low", "medium", "high"])

2c. Numeric Measure

Represents quantitative variables. Numeric variables take on values that are integers
and floats. You must specify a numeric measure through the Unit the Measure belongs
to.

A Numeric Measure has the following properties:

• unit (Unit): The unit that the measure is of.

• name (str): The name of the numeric variable. If you have data, this should correspond to
the column’s name in the data.

For example:
# To specify that lines of code written in one hour

is measured for each programmer unit.
loc <- numeric(programmer, "lines of code")

3. SetUp

SetUp variables are variables that describe the data collection setting. SetUp variables
are neither Units nor Measures. This can represent time, year, etc. describing the data
collection process. For example, if you collected height data from a programmer over the
course of four weeks, the week number is neither a Unit (programmer) nor a Measure
(height) of a Unit.

A SetUp variable has the following properties:

• name (str): The name of the variable. If you have data, this should correspond to the
column’s name. The dataset must be in long format.

• order (list, optional): Use a specific ordering of the values of environment settings.

• cardinality (int, optional): The number of unique values of the variable.

For example:
week <- SetUp("time", [1, 2, 3, 4])

Your input!

Starting from these language ideas, specify any variables from the paper.
Feel free to adapt or introduce new syntax if you feel it’s missing or there is a more intuitive

way to express what you want to say. Also, feel free to introduce new types of variables, language
constructs, etc! Really try to fully communicate what you want to express about the variables.
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D.2 Task 2: Study Design and Data Collection

You summarized the study design as follows: <Fill in based on homework response>

Current idea: Data measurement relationships

As before, the language constructs presented here and for the remainder of the study are an initial
set of ideas we have. We are actively seeking to add, remove, and adapt the language.

We are thinking about two ways of specifying how data were collected.

1. Number of instances

We want to add a number_of_instances to how each Measure is specified to indicate how many
times a Unit provided an observation of the Measure.

For example:
# There are 40 programmers in our study
programmer <- Unit("participant", 40)
# Each programmer is assigned to exactly one IDE condition
ide <- nominal(programmer, "ide", number_of_instances=1)
# Each programmer has an experience level
experience_level <- ordinal(programmer, "experience level",

["low", "medium", "high"],
number_of_instances=1)

# Each programmer writes lines of code for the study
loc <- numeric(programmer, "lines of code", number_of_instances=1)

# Each programmer writes lines of code, once per week
week <- SetUp("time", [1, 2, 3, 4])
loc <- numeric(programmer, "lines of code", number_of_instances=week)
# The above is equivalento the below:
loc <- numeric(programmer, "lines of code",

number_of_instances=Per(Exactly(1), week))

# Each programmer writes lines of code,
exactly three times per week (multiple measures)

loc <- numeric(programmer, "lines of code",
number_of_instances=Per(Exactly(3), week))

# Each programmer writes lines of code,
at most three times per week if a programmer can have
0, 1, 2, or 3 measures of lines of code

loc <- numeric(programmer, "lines of code",
number_of_instances=Per(AtMost(1), week))
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Your input!

Specify how the variables were collected in the paper.

2. Data measurement relationships

Previously, you could specify the number of instances or observations for each measure. In addition
to specifying the number of instances/observations a Unit provides for each Measure, we think it
might be important to specify that a Unit is nested within another Unit.

Nests within means the base Unit (e.g., programmer) is nested within a group Unit (e.g.,
team)

For example:
# Programmers
programmer <- Unit("participant", 40)
# Teams
team <- Unit("team", 10)
# To specify that programmers work in teams at their company
programmer.nests_within(team)

Your input!

What types of data measurement relationships would you like to specify for this paper? Specify
any data measurement relationships between variables.

Feel free to adapt or introduce new syntax if you feel it’s missing. Also, feel free to introduce new
relationships, language constructs, etc! Really try to fully communicate what you want to express
about the data measurement relationships.

233



D.3 Task 3: Conceptual Model

You summarized the authors’ conceptual model as below: <Fill in based on homework response>

Current idea: Conceptual relationships

As before, the language constructs presented here and for the remainder of the study are an initial
set of ideas we have. We are actively seeking to add, remove, and adapt the language.

We currently are thinking about providing three current language constructs. We think there
may be more or additional ways to fully express/capture your conceptual model. We are curious
what is most natural, or intuitive, for you to express conceptual models.

1. Causes

Causes means you either know or suspect that a variable causes another.

For example:
# Specifying all the variables
programmer <- Unit("participant", 40)
language <- nominal(programmer, "programming language")
ide <- nominal(programmer, "ide")
experience_level <- ordinal(programmer, "experience level",

["low", "medium", "high"])
loc <- numeric(programmer, "lines of code")

# IDE causes LOC
causes(ide, loc)

2. Associates with

Associates with means you know or suspect a relationship between variables, but you
are unsure if a variable causes another. Note, associates with is commutative.

For example:
# Experience level and lines of code e are associated with another.
associates_with(experience_level, loc)
# Order does not matter:
associates_with(loc, experience_level)

3. Moderates

Moderates means you either know or suspect that a variable’s effect on another variable
is moderated by one or more variables.

For example:
```
# Experience level moderates the effect of programming language

on lines of code
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moderates(c(experience_level, language), loc)
# In other words, programming language moderates the effect of

experience level on lines of code
# Order of moderating variables doesn't matter
moderates(c(language, experience_level), loc)

# Note: Moderates implies experience and programming language
cause or are associated with lines of code (if not already specified)

Your input!

Starting from these language ideas, specify your conceptual model relating the variables.
Feel free to adapt or introduce new syntax if you feel it’s missing. Also, feel free to introduce new

relationships, language constructs, etc! Really try to fully communicate what you want to express
about the data measurement relationships.
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Appendix E

rTisane Summative Evaluation Study
Materials

What follows are materials for the summative evaluation lab study, as described in Section 6.4.
Phase 1 and each task labeled Without rTisane were in an editable word processing document
shared with the participant. Each task labeled With rTisane was in an editable R Markdown file
open in RStudio. Participants edited the R Markdown files via remote control.
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E.1 Phase 1: Warm Up

Scenario: You are a census researcher leading a team that investigates how an individual’s back-
ground and demographic factors influence income. Your motivating research question is “What
aspects of an individual’s background and demographics are associated with income after they have
graduated from high school?”

Warm up

What are your initial ideas about what factors influence income among adults? Summarize your
ideas in a conceptual model. A conceptual model specifies the factors you know or hypothesize
influence an outcome, what factors you think do not influence an outcome, and how those factors
might interact to give rise to the outcome.

For example, a conceptual model for plant growth might communicate the following: Sunlight
influences plant growth. Water influences plant growth. Both sunlight and water are necessary for
plant growth. Plant-owner love influences plant growth because love influences plant placement,
which might influence sunlight. You might also express the above conceptual model as

1. Spend approximately 5 minutes to express your conceptual model. Consider providing (i) a
list of relationships between variables of the form “Variable”, “relationship”, “Variable” (e.g., “Plant
owner love, causes, plant growth”) OR (ii) a diagram with variables and relationships between them
clearly labeled, similar to the above example diagram. Feel free to write or draw below. Here is a
canvas in case you prefer.

238



E.2 Phase 2a: Express Conceptual Models, Without rTisane

Your team is able to collect data about the below variables. The data that your team has collected
can be found here.

• Age (continuous)

• Race (unordered categories)

– 5 categories:White, Black/African American, American Indian or Alaska Native, Asian
or Pacific Islander, Mixed Race

• Highest Education Completed (ordered categories)

– 5 categories: Grade 12, 1 year of college, 2 years of college, 4 years of college, 5+ years
of colleges

• Current Employment Status (unordered categories)

– 3 categories: N/A, Works for wage, Self-employed

• Sex (unordered categories)

– 2 categories: Male, Female

• Income (continuous)

Express a conceptual model including only the variables you and your team have access to. Feel
free to write or draw below. Here is a canvas in case you prefer.
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E.3 Phase 2b: Express Conceptual Models, With rTisane
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E.4 Phase 3a: Implement Statistical Models, Without rTisane

1. Relying on your conceptual model alone, implement a statistical model that assesses the
influence of variables you believe to be important (in the context of additional potentially
influential factors) on income.

You are welcome to use any tools you would like. Please just make sure to share your screen.

2. Summarize the results of your analysis below.
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E.5 Phase 3b: Implement Statistical Models, With rTisane
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E.6 Dataset for Statistical Analysis

The dataset participants analyzed in the summative evaluation was from the U.S. Census. I down-
loaded the 2021 “U.S. CENSUS DATA FOR SOCIAL, ECONOMIC, AND HEALTH RESEARCH”
from IPUMS USA [RFS+23] on June 6, 2023. I then filtered for people who graduated from high
school and combined race groups to simplify the race variable’s cardinality. The resulting dataset
included a total of 2,414,472 observations.
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