Understanding and Supporting Debugging Workflows in
Multiverse Analysis

Ken Gu
kenqgu@cs.washington.edu
University of Washington
Seattle, Washington, USA

Traditional Analysis

Cutoff

Bayesian Model
Family Function

Eunice Jun
emjun@cs.washington.edu
University of Washington
Seattle, Washington, USA

Tim Althoff
althoff@cs.washington.edu
University of Washington
Seattle, Washington, USA

Multiverse Analysis

bayesian

-------------- ------------
-- ””””””””””””””

-{ lognormal

Analysis 1 Analysis 1 Analysis 2 Analysis 3| Analysis 4 Analysis 5 Analysis 6
Reported 10 10 10 10 200 200 200
. bayesian frequentist bayesian bayesian frequentist bayesian bayesian
AnaIySIs binomial binomial lognormal binomial lognormal

Figure 1: Overview of Multiverse Analysis. In traditional analyses, an analyst may consider multiple decisions in their analysis—
data filter cutoff, statistical modeling approach (e.g., frequentist, Bayesian), and Bayesian family function (e.g., binomial,
lognormal). Traditionally, analysts may conduct multiple analyses with different decision choices but ultimately report only
one combination of decisions (a “universe”). In contrast, in multiverse analyses, analysts consider, conduct, and report all

reasonable combinations of decisions.

ABSTRACT

Multiverse analysis—a paradigm for statistical analysis that con-
siders all combinations of reasonable analysis choices in paral-
lel—promises to improve transparency and reproducibility. Although
recent tools help analysts specify multiverse analyses, they remain
difficult to use in practice. In this work, we identify debugging as a
key barrier due to the latency from running analyses to detecting
bugs and the scale of metadata processing needed to diagnose a
bug. To address these challenges, we prototype a command-line

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’23, April 23-28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04...$15.00
https://doi.org/10.1145/3544548.3581099

interface tool, MULTIVERSE DEBUGGER, which helps diagnose bugs
in the multiverse and propagate fixes. In a qualitative lab study
(n=13), we use MULTIVERSE DEBUGGER as a probe to develop a
model of debugging workflows and identify specific challenges,
including difficulty in understanding the multiverse’s composition.
We conclude with design implications for future multiverse analysis
authoring systems.

CCS CONCEPTS

« Human-centered computing — User studies; Interactive sys-
tems and tools; » Software and its engineering — Development
frameworks and environments.

KEYWORDS

Multiverse analysis, statistical analysis, debugging, workflows, anal-
ysis authoring

CHI 23, April 23-28, 2023, Hamburg, Germany

ACM Reference Format:

Ken Gu, Eunice Jun, and Tim Althoff. 2023. Understanding and Supporting
Debugging Workflows in Multiverse Analysis. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (CHI °23), April
23-28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3544548.3581099

1 INTRODUCTION

Even when trained analysts are given the same analysis task and
dataset, they make different, sometimes conflicting, conclusions
[17, 44, 50, 51]. While it is not expected that different analysts when
given only a dataset and a broadly defined task are to arrive at
the exact same results, the level of variability is surprising. These
divergences may even contribute to reproducibility crises across
scientific disciplines [9, 42]. How could this be? Researchers be-
lieve that the flexibility in analytical choices (e.g., data filtering,
statistical modeling approach, model parameters) is a key contrib-
utor. For example, analysts leverage their unique belief systems,
domain knowledge, expertise, understanding of the problem, and
exploratory results to justify their analytical decisions [29, 37]. Ad-
ditionally, analysts only report the result of one set of analysis
decisions despite exploring multiple combinations.

As a response to these problems, prior work has proposed multi-
verse analysis [52, 55] as a promising solution. Multiverse analysis,
in contrast to traditional analysis, is a statistical analysis paradigm
that involves considering, specifying, and reporting results from all
combinations of key decision options (Figure 1 right). Multiverse
analysis reveals how sometimes arbitrary decisions may affect an
analysis conclusion. Moreover, by documenting and accounting
for all reasonable decision options, multiverse analysis, and related
approaches such as sensitivity analysis, improve transparency and
robustness of statistical analyses and could prevent future repro-
ducibility crises.

Despite the many benefits of multiverse analysis, authoring a
multiverse analysis remains challenging. Authoring multiverses
is difficult because analysts must explicitly enumerate decisions
and the options for those decisions, write programs that generate
additional programs or scripts for each individual combination of
options, compare and jointly interpret statistical results across all
combinations of decision choices, and iteratively debug and refine
all the above. Recent work in the HCI community and beyond pro-
vide tools to ease some of the challenges in the authoring process:
Boba [38], multiverse [48], rdfanalysis [24]. However, multiverse
analysis remains difficult to adopt for many analysts. What are
authoring challenges that, if addressed, could lower the barriers
to authoring multiverse analyses? Prior work [48] and our own
correspondences with multiverse tool developers and multiverse
practitioners have identified debugging as a central challenge.

In this work, we target multiverse debugging as a key chal-
lenge. Based on prior work [48], our experiences, and with cor-
respondences with multiverse practitioners and tool developers,
we develop an initial model of debugging workflows in multiverse
analysis (Figure 3). We find that analysts tend to focus on debugging
a single analysis at a time (a “universe”). Even debugging a single
universe script is time-consuming due to the need to triage and fix
code. The scale of multiverse analyses, which can be on the order
of tens of thousands of universes [37], exacerbates this problem

Ken Gu, Eunice Jun, and Tim Althoff

and introduces additional cognitive burdens, such as keeping track
of how many unique errors there are, which set of universes these
correspond to, and what portion of analyses are buggy. Based on
our initial workflow model, we identify three unique challenges of
debugging in the multiverse paradigm:

Challenge 1 — Detecting bugs takes a long time during the
slow execution of a multiverse (Figure 3D1).

Challenge 2 — Diagnosing the source of a bug to a specific
decision choice or set of choices (i.e., singular universe) is
hard amongst thousands of universes (Figure 3D2).

Challenge 3 — After fixing a bug in a single universe (Fig-
ure 3D3), the analyst needs to remember changes and under-
stand how to propagate them to the rest of the multiverse
(Figure 3D4), which increases cognitive load and creates
opportunities for error.

Although existing debugging tools and workflows help analysts fix
a bug in a specific universe, determining what universe to focus
on and subsequently propagating one universe’s changes to other
universes that share the same error, remain under-supported.

To address these initial challenges, we prototype a debugging
tool, MULTIVERSE DEBUGGER (Section 3). MULTIVERSE DEBUGGER
is a command-line interface (CLI) tool that extends Boba [38], an
an existing open-source tool that has already been employed in a
large real-world study [49]. MULTIVERSE DEBUGGER has three key
features, each of which addresses a challenge: (i) execution of a a
significantly smaller set of decision choice combinations to facilitate
fast iteration (Challenge 1) (ii) aggregation of error messages across
a multiverse analysis (Challenge 2), and (iii) propagation of edits
made to the rest of the multiverse (Challenge 3).

Using this tool as a probe, we conduct a qualitative lab study
with 13 analysts to explore multiverse debugging in greater depth
(Section 4). This lab study confirms Challenge 1 and Challenge 2
and we find MULTIVERSE DEBUGGER’s features benefit analysts in
diagnosing multiverse error messages and quickly detecting bugs.
We observe that Challenge 3 is not a central concern to analysts
as, prior to propagating bug fixes, analysts already struggle with
understanding the composition of the multiverse (i.e., the multi-
verse analysis tree in Figure 1), which is critical in their efforts
to diagnose multiverse error messages. We also observe analysts,
inspired by MULTIVERSE DEBUGGER, favor selective execution of a
subset of universes in the debugging process, which current tools
do not yet support.

Based on these findings (Section 5), we update and extend our
model of the multiverse debugging workflow and associated chal-
lenges (Figure 6). In addition, we discuss (Section 6) a set of design
implications that include helping analysts better understand the
composition of the multiverse and supporting analysts in navigat-
ing their multiverse analysis.

This paper contributes the following:

(1) Findings from a qualitative lab study that reveal open chal-
lenges in multiverse debugging,

(2) A publicly available open-source prototype of MULTIVERSE
DEBUGGER that addresses some of these challenges and lab

Understanding and Supporting Debugging Workflows in Multiverse Analysis

study results that evaluate to what degree our prototype’s
features can alleviate them !,

(3) Amodel of the key operational steps in multiverse debugging
workflows and associated challenges, and

(4) A set of design implications for how to better support de-
bugging for multiverse analysis authoring.

2 BACKGROUND AND RELATED WORK
2.1 Debugging in Software Engineering

Debugging is challenging and time-consuming. In prior works
aimed to understand debugging in software engineering, devel-
opers reported spending 20% to 60% of their time debugging [10].
This has been later confirmed in a study analyzing real-world de-
veloper debugging sessions [8].

A central challenge in debugging is the "large temporal or spatial
chasms between the root cause and the symptom" [34]. Based on a
prior lab study, researchers detailed the mechanisms of debugging
as involving the processes of searching, relating, and collecting
information of perceived relevance, in which the development envi-
ronment plays a central role in influencing developers’ perceptions
[35]. In other studies on general software development, it was
discovered that a significant amount of mental effort is spent in un-
derstanding how a program works via searching relevant software
artifacts, and inspecting source code/documentation [40, 57].

With this understanding, multiverse debugging is likely to exac-
erbate the problems of traditional debugging workflows. There are
more analyses to work with, more meta-data per analysis in the
form of associated decision options which can affect the presence
of bugs, and shared relationships between the collection of scripts
that need to be considered. All this information, if not presented
well, can make the process of collecting and relating relevant in-
formation significantly harder. We contribute the first user study
to explore and model debugging behavior and challenges in the
context of a multiverse analysis workflow.

2.2 Multiverse Analysis

Multiverse analysis [52, 55] aims to have the analyst consider all
reasonable decisions and combinations of decision options a-priori
while then conducting and reporting all considered analyses. "Rea-
sonable" here means actions with firm theoretical and statistical
support [53]. Moreover, a decision in the multiverse paradigm is
any decision an analyst may consider in an analysis. These deci-
sions (e.g., Cutoff, Modelling, and Bayesian Model Family Function
in Figure 1) are wide-ranging and can cover data collection and
wrangling, statistical modeling, inference, and evaluation. For each
decision, there are decisions options, defined as the alternatives
that the specific decision could take.

Because multiverse analysis considers all reasonable combina-
tions of decision options, there is a combinatorial explosion in the
number of universes as more decisions are involved. For example,
a multiverse of 5 decisions each with 4 options would result in
43 = 1024 universes. Prior work has estimated that multiverses in
practice contain between hundreds and hundreds of thousands of
individual analyses [37].

The code for our prototype is publicly available at https://github.com/behavioral-
data/multiverse-tooling.

CHI 23, April 23-28, 2023, Hamburg, Germany

As multiverse analysis has gained recognition and adoption
[16, 18, 19, 30, 45, 46], associated workflows, tools, and visualiza-
tion techniques have been developed [20, 24, 25, 38, 48]. Recent
work on multiverse authoring has identified debugging as an im-
portant, unaddressed challenge [48]. The present work extends this
prior work by contributing the first user study and first prototype
specifically focused on the unique debugging challenges that the
multiverse paradigm presents.

2.3 Tools for Multiverse Analysis

Traditionally, analysts must consider hundreds if not thousands
of universes if they were to perform a multiverse analysis. This
can result in a large set of mostly similar universe scripts which,
with so many variations, is difficult to maintain [32]. On the other
hand, an analyst can write a complex series of control flow logic
in one large script [56] but this makes it hard to selectively run an
individual universe. Multiverse authoring tools make it easier to
specify a multiverse analysis and execute it. These tools simplify
specifying decisions by introducing special syntax to specify deci-
sions, decision options, and constraints between decision options in
one central file. In these general multiverse authoring tools, namely,
Boba [38] and multiverse [48], a common authoring workflow
is observed (Figure 2). Analysts specify their multiverse in a cen-
tral multiverse specification containing different code snippets for
different decision options (Figure 2A). Afterwards, the multiverse
specification is compiled into universes (Figure 2B). A universe
contains an instantiation of decisions’ options and compilation also
produces a specification summary enumerating each universe’s de-
cision options (Figure 2C). After the compilation step, the universes
are executed which each produces an error message (Figure 2D)
and other outputs (Figure 2E).

While largely following the authoring workflow in Figure 2,
multiverse aims to support the iterative workflow of a computa-
tion notebook. It is a R package that works in RMarkdown note-
books. To specify decisions, execute the universes, and gather re-
sults, analysts call multiverse methods. The notebook acts as the
multiverse specification. The compilation is implicitly performed
under the hood when universes are executed.

Meanwhile, in Boba, the multiverse specification is one central
template file. Boba places specific domain-specific language (DSL)
directives that indicate how different chunks of code fit together.
This has the benefit of being programming language agnostic, treat-
ing non-multiverse code as raw strings. Nevertheless, because of
these directives, the template file is not executable and cannot
leverage any of the advanced debugging features in modern inter-
active development environments (IDEs). Boba provides additional
command-line commands to compile and run the multiverse. Ana-
lysts run boba compile to compile their multiverse specification.
To execute the multiverse after compilation, Boba provides the com-
mand boba run to execute a range of or all the universes. When
executed with Boba, each universe’s standard output messages and
standard error messages are saved to a corresponding output file
and can be gathered in a CSV file.

However, other than collecting error messages as entries in a ta-
ble, both tools do not provide any additional support for multiverse
debugging workflows. Our work extends the authoring framework

CHI 23, April 23-28, 2023, Hamburg, Germany

Ken Gu, Eunice Jun, and Tim Althoff

®

®

Universe 6

AN

#--- (A)
df = read_csv("data.csv") %>%

Universe 1

df = read_csv("data.csv") %>%
filter(speed > 10)

filter(speed > {{cutoff=10, 200}}) compile model = Im(log_y ~ x, data = df) execute
--- (Model) frequentist — —
model = Im(log_y ~ x, data = df) Specification summary
Universe | cutoff | brm_family Model @
ﬁ;;-e(lh:lo::r:)(ybiy:s(::?a = df, family = R ° frequentist Other Outputs
{brm_family="binomial", "lognormal"}}()) 2R 200 frequentist
3.R 10 binomial bayesian
4R 10 lognormal bayesian
5.R 200 binomial bayesian
6.R 200 lognormal bayesian

Figure 2: Multiverse Authoring Process An analyst starts out by writing a multiverse specification (A). Afterwards, the analyst
compiles the multiverse specification into individual universes (B), which are enumerated in a specification summary (C).
The specification summary indicates what the decisions are for a given universe. Next, when the universes are executed, each
universe generates an error message (D) and other outputs (E) such as a model fit summary, model predictions etc. While this
example shows Boba’s domain specific language, other tools follow a similar process.

of existing tools to study and alleviate the challenges encountered
during multiverse debugging. In this paper, we focus on studying
debugging workflows with Boba, as it is widely researched in the
research community [13, 23, 41, 50, 54]. One advantage of Boba
is that it is programming language agnostic, allowing multiverse
analysis to reach a greater audience.

2.4 Debugging is a Challenge in Multiverse
Authoring

Based on prior work [20, 37, 38, 48], our experiences, and initial
correspondences with multiverse practitioners and multiverse tool
developers (see Appendix A), we hypothesize an initial debugging
workflow (Figure 3). The workflow model is a first attempt to un-
derstand debugging in multiverse analysis and contrasts with the
multiverse authoring workflow that is currently supported through
existing tools (Figure 3A). After specifying and compiling a multi-
verse specification, the analyst executes the universes which pro-
duce error messages (Figure 3D1). Next, the analyst tries to diagnose
the cause of the bug, which leads them to a single buggy universe
to target (Figure 3D2). This step often involves examining multiple
universes that share an error message. Once the analyst is working
with an individual universe, they address the bug and make edits
along the way, the same as they would when debugging a single
script (Figure 3D3). After, they abstract and propagate the specific
changes in the universe back to the higher-level multiverse specifi-
cation (Figure 3D4). Finally, after the edits are propagated to form
a new multiverse specification, it is compiled (Figure 3D5). This
iterative debugging cycle typically repeats multiple times until all
bugs are addressed.

This workflow model suggests the following three challenges to
debugging a multiverse analysis.

Challenge 1 - Detecting bugs is slow. During the execution of
the multiverse (Figure 3D1), the order of execution of the universes
is arbitrary. Therefore, to discover a bug that occurs in a select
few universes, hundreds or thousands of universes may need to
be executed before the buggy universe is encountered. Even with
running universes in parallel, this process can be time-consuming
and drastically slows down the debugging cycle.

Challenge 2 - Sifting through error messages and multiverse
artifacts to diagnose a bug is difficult at scale. In the process of
diagnosing an error from running the multiverse (Figure 3D2), an
analyst potentially needs to navigate through many error messages,
many universes, and the specification summary and relate these
sources to understand the shared decision options of an error. It is
infeasible for an analyst to inspect hundreds of files (or a single file
that combines these) and looking at a significantly smaller subset
may not fully isolate the shared decision options of an error and
divert focus from the true source of a bug. We note that a multiverse
that does not lead to any error messages is not necessarily bug-
free. For example, a poorly specified model formula may not be
statistically sound but may not raise any error messages. However,
many bugs exhibit themselves as error messages and that is the
primary way analysts debug in our experience.

Challenge 3 - Abstracting and propagating universe edits to
the multiverse increases cognitive load. In the procedure to
abstract and propagate universe edits to the multiverse specifica-
tion (Figure 3D4), the analyst needs to remember all their edits
and locate where to place them in the multiverse specification.

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI 23, April 23-28, 2023, Hamburg, Germany

Authoring Workflow Debugging Workflow

@ compile

compile [\, execute
- execute i
Universe 1 L —

o
- diagnose o T
(D2 propagate
\) multiversel @

edits

diagnose and fix
— Edited

'> Universe
&

Buggy
Universe

Figure 3: Authoring vs Debugging Workflow. Existing tools focus on the authoring process in a multiverse workflow (A)
comprising of a multiverse specification, compiling the specification to universes, and executing the universes. However, there
is an entire debugging workflow pertinent to the multiverse paradigm that is not well understood, presents challenges, and lack
support from existing tools. We hypothesize the following debugging workflow. First, an analyst executes universes which can
generate error messages (D1). Here, detecting errors quickly is challenging because executing all universes is time consuming
and a universe containing error prone code may not be executed until hundreds or thousands of others have been executed
already. Next, the analyst diagnoses what decision or set of decisions caused the errors (D2) which guides them to focus on one
buggy universe. This step is challenging because an analyst needs to synthesize information from a myriad of sources (i.e., the
multiverse specification, universes, error messages, and the specification summary) which only gets worse as the multiverse
scales. Now, debugging at the universe level, the analyst diagnoses and fixes their bug in the typical single script debugging
paradigm and is free to use debugging tools they are most comfortable with (D3). Once the fixes are made at the universe level,
the analyst then propagates the edits made to the universe back to the multiverse specification (D4). This step contains the
challenge of remembering changes in the universe and where those changes propagate to in the overall multiverse specification.
Finally, the analyst compiles the new specification (D5) and the cycle repeats. The gray area highlights shared workflow steps.

In complex multiverse specifications and universe edits that in- can lead to thousands of individual error messages. In ad-
volve many changes, propagating universe edits induces additional dition, error messages may arise due to a combination of
cognitive demands, especially when the analyst must keep track decision options, which the analyst did not test when writ-
of the associated decision options underlying the code they are ing the multiverse specification. Therefore, diagnosing the
propagating. severity and frequency of an error message helps to identify

which parts of the code may need to be updated (including
3 PROTOTYPE: MULTIVERSE DEBUGGER adding or removing dependencies between decision options

in the multiverse specification). To identify common bugs
and distinguish among different kinds of bugs, summariz-
ing the frequency of error messages and connecting them
to specific decisions and decision options are likely to help
analysts.

(3) DG 3 - Support the abstraction and propagation of single uni-
verse bug fixes to a multiverse specification. The context of

To better understand multiverse debugging workflows and how to
support them, we set out to build a prototype tool, MULTIVERSE DE-
BUGGER, to use as a probe in our subsequent lab study. We identify
three design goals to support analysts in the multiverse debugging
workflow (Figure 3). The goals correspond to addressing the three
challenges identified in Section 2.4.

(1) DG 1 - Reduce the time between executing universes and en- a multiverse analysis adds new complexity to fixing bugs.
countering error messages. After compiling a multiverse spec- An analyst may elect to debug error messages in a specific
ification, a tool should enable analysts to quickly observe universe as opposed to the higher-level multiverse specifica-
error messages before committing to running the full multi- tion. This enables the analyst to take advantage of already
verse. This is in the spirit of unit testing in which different familiar and idiosyncratic ways of debugging specific uni-
components of the multiverse are rapidly tested before run- verse error messages. In the analyst’s process of debugging
ning the entire system. Quickly identifying error messages a single universe, they can leverage an entire ecosystem of
before executing an entire multiverse may reduce time spent single script debugging tools that they may already be fa-
authoring (buggy) multiverse analyses. miliar with. Therefore, making the process of propagating

(2) DG 2 - Give an overview of error messages and how they relate
to specific decision options. Running thousands of universes

CHI 23, April 23-28, 2023, Hamburg, Germany

changes to individual universes to the higher-level multi-
verse specification easier, empowers the preferred single
universe debugging workflow.

Based on these three design goals, we implement MULTIVERSE DE-
BUGGER with three core features: DECISION COVER, ERROR MESSAGE
AGGREGATION, and UNIVERSE-TO-MULTIVERSE DIFF. The features of
MULTIVERSE DEBUGGER are designed to be used after compiling a
written multiverse specification. This prototype extends the Boba
multiverse library [38] and each feature is exposed through the
Boba command line interface.

While we implemented MULTIVERSE DEBUGGER on top of Boba,
the challenges and design goals would largely exist for other multi-
verse authoring tools as well. Boba makes the decision to represent
universes and error messages as individual files. While other tools
may make different design decisions such as consolidating all these
into a single file or object, this would still result in similar challenges
of slow detection of bugs (Challenge 1) and difficulty of diagnos-
ing error messages from a large number of universes (Challenge
2). These challenges are ubiquitous because of the combinatorial
explosion of universes which is inherent in multiverse analysis’
definition to run individual analyses corresponding to all combi-
nations of decisions. Therefore, these challenges which motivate
DG 1 and DG 2 persist no matter the choice to represent universes
as individual files or some other format. Challenge 3 and DG 3,
meanwhile, are more specific to a universe level workflow which
is enabled by tools like Boba in which the universe is represented
as a single file. However, the choice of whether a tool enables a
universe level workflow or multiverse level workflow (in which
individual universes are not easily editable) comes with its own
trade-offs which we further describe in Section 6.3.

Both the ERROR MESSAGE AGGREGATION and the UNIVERSE-TO-
MULTIVERSE DIFF interfaces are implemented as web applications
in Python. The frontend uses HTML, CSS and Bootstrap [43], and
the backend uses Flask [47]. The UNIVERSE-TO-MULTIVERSE DIFF
interface also uses the Monaco Editor library [39].

3.1 Accelerating Bug Discovery Through
Minimum Cover Approximation

A key problem in executing universes with existing tools is the
latency between executing universes and encountering error mes-
sages. Analysts may not encounter a universe that contains a spe-
cific decision option until hundreds or thousands of universes have
already been run. DECISION COVER can reduce the latency in detect-
ing a bug (DG 1) by helping the analyst quickly identify all error
messages corresponding to code in a specific decision option while
running a much smaller subset of universes. In seven multiverses
we tested, DECISION COVER reduced the number of universes to run
by over 98%. After the analyst runs DECISION COVER (boba run
—-cover), DECISION COVER calculates the reduced set of universes,
executes them, and surfaces the ERROR MESSAGE AGGREGATION in-
terface (Section 3.2) to summarize the error messages encountered
in the executed universes. The analyst can interact with this inter-
face to promptly see the set of error messages caused by a bug in
any decision option.

DECISION COVER calculates an approximation to the minimal set
of universes to run such that all decision options in the multiverse

Ken Gu, Eunice Jun, and Tim Althoff

are "covered". The problem of finding the minimal set of universes
reduces to the classic set cover problem [31] which is known to be
NP-hard [1]. To encourage trying different universes during each
DECISION COVER run, we employ a heuristic approximation based
on random sampling that is highly effective in practice. We describe
the DECISION COVER algorithm in detail in Appendix B.

Making sure each decision option is encountered corresponds to
ensuring “condition coverage” in traditional software testing [12].
However, DECISION COVER does not ensure “multiple-condition
coverage” [12] which would require running all combinations of
decision options (essentially the entire multiverse) and leads to
the combinatorial explosion of execution time. Nevertheless, error
messages raised by "multiple-condition coverage" but not "condi-
tion coverage" are rare and become more obvious after the errors
DECISION COVER raises are addressed.

3.2 Diagnosing Bugs via Error Message
Aggregation

A core challenge in diagnosing a bug from error messages is that it is
difficult to sift through the myriad of information sources (i.e., error
messages, universe files, and the specification summary) to diagnose
a bug to a set of decision options. Therefore, we design ERROR
MESSAGE AGGREGATION to aggregate this information automatically
and give analysts an overview of error messages and how they relate
to specific decision options (DG 2). ERROR MESSAGE AGGREGATION
supports two interactions: identifying groups of error messages
and the scale of an error, and understanding the decisions that may
cause an error.

When an analyst runs the ERROR MESSAGE AGGREGATION com-
mand (boba —-error), the program ingests error messages from
executed universes and categorizes errors based on string similarity
(to handle slight line number or other changes in the error trace-
back). String similarity is calculated using the string grouper
Python library [11] and is based on the cosine similarity of vectors
of TF-IDF values in which the terms are N-Grams. Afterwards, the
information is presented in an interactive interface that includes
the aforementioned interactions (Figure 4).

3.2.1 Identifying error groups and the scale of errors. The analyst
can quickly identify the number of universes affected by each error
in a summary panel on the left-hand side (see Figure 4A1-3). Each
error group has a preview of the error text (Figure 4A2) and a badge
indicating the number of universes affected (Figure 4A3). The panel
also displays a progress bar indicating the progress of universes run
so far and updates when the user refreshes the page (Figure 4A1).
The summary panel gives the user a sense of how many errors
occur relative to what universes have already been executed. In
addition, the summary view of error groups helps the analyst assess
abug’s frequency across the multiverse and subsequently prioritize
errors.

3.2.2 Understanding the decisions that may cause an error. Once
an analyst has selected an error to investigate from the summary
panel, they can focus on the shared decision options that potentially
isolate an error group via the center panel (Figure 4B1-3).

The center panel shows a traceback of the error message as well
as the shared decisions options of all the universes that caused that

Understanding and Supporting Debugging Workflows in Multiverse Analysis

Aggregate Errors

@ B1
Ran 480 out of 480 universes
Errorin “contrasts<-"(**tmp*", value =
contrf...

Error in "contrasts<-"("*tmp*", value = contrfuns[1 +
isOF[nn]]) =

contrasts can be applied only to factors with 2 or
more levels
Calls: Im ... model.matrix -> model.matrix.default ->
contrasts<-
Execution halted

Error in vif.default(model) : there are aliased

Error in vif.default(model) : there are aliased
coefficients in the model

Calls: vif -> vif.Im -> NextMethod -> vif.default
Execution halted

96 out of 480 Universes Affected

No Error but has Miscl Warnings

96 out of 480 Universes Affected

Error

Error in vif.default(model) : there are aliased coefficients in the model
Calls: vif -> vif.lm -> NextMethod -> vif.default
Execution halted

Shared Relevant Options (in Bold)

1. log_speed ~
page_condition*dyslexia
2. log_speed ~
Shared Decision Options tt page_condition*dyslexia + img_width
+ num_words + age + english_native
page_condition*dyslexia +
img_width + num_words + age +
reading_experience

Common Universes 4. log_speed ~
Fi page_condition*dyslexia + img_width
+ device |

123
135 Decisions Code Path sample_size rt brmsfamily ~dyslexia
183 Option _start->B2- 1284 adjust_rt dyslexia

>C->RC-
263 >LM1->0

CHI 23, April 23-28, 2023, Hamburg, Germany

bad_device formula

View Aggregate Warnings

‘multiverse/code/universe_27.R.py

min_wpm

c() log_speed ~ page_condition*dyslexia + 150
img_width + num_words + age +
reading_experience

Figure 4: Error Message Aggregation Interface. The left side panel (A) contains a progress bar (A1) and unique groups of error
messages in the universes ran so far. Each group contains a preview of the error message (A2), and the number of universes
affected in each error aggregation (A3). The left side panel selects the error message to look into in the main panel (B). The main
panel comprises of the full error message (B1), the decision options that are shared in the error aggregation (B2), and sample
universes that contain the error message (B3). Without such a tool, analysts would have to manually inspect error messages
(potentially hundreds or thousands of error messages) while cross-referencing universe entries in the specification summary.
Not only is this action tedious but it is prone to missteps leading to poorly understood bugs. ERROR MESSAGE AGGREGATION
seeks to address this challenge by automatically surfacing the information of all unique error messages and shared decisions

in a grouped error.

error (Figure 4B2). Each decision that may cause the error is shown
as a button to the analyst in which they can then click to see the
shared decision options of universes that have this error message.
Decisions that are most likely irrelevant to the error are removed
to shift focus to the potential buggy decisions.

To determine whether a decision is irrelevant the following
heuristic is used. If the error involves all options of a decision,
then it is unlikely that anything in that decision is causing the error.
If the error involves not all options in a decision, then there is a
possibility that something specific to that option could affect the
error. It must be noted, however, that the existing heuristic may
not work if each option has an error that is identical. However, this
scenario may be unlikely and it was never encountered throughout
our entire study.

With a better understanding of the severity and decision options
associated, the analyst can focus on a specific universe that has
the selected error message to fix the specific bug. With an under-
standing of shared decision options in an error, the analyst may
be able to better isolate where the error occurs and start with a
more focused understanding of how the error may have occurred.
Moreover, having a grasp on the isolated decision option that may
cause an error provides a more semantically meaningful error mes-
sage than a single script bug. With the additional information of

an error message, the analyst can look for common universes that
share the error at the bottom of the main panel (Figure 4B3) and
begin focusing on one universe. Overall, the emphasis on outlining
shared decisions across an error message can potentially help the
analyst focus on a specific universe and the code most likely to
cause the error.

3.3 Propagating Universe Edits with
Universe-to-Multiverse-Specification Diffs

After making changes to a universe during debugging, the analyst
may experience difficulty remembering all their universe edits and
locating where to place edits in the multiverse specification. We
design UNIVERSE-TO-MULTIVERSE DIFF to support abstracting and
propagating edits in the universe to the multiverse specification
(DG 3).

UNIVERSE-TO-MULTIVERSE DIFF propagates these edits automati-
cally and presents the changes to the multiverse specification as
suggestions. After an analyst finishes making edits to a universe,
they can run boba diff to load an interface that communicates
the suggested changes (Figure 5). The analyst can then refine these
changes further if necessary.

CHI 23, April 23-28, 2023, Hamburg, Germany

Analyst’s Universe Edits

Old universe_5.py (Read only)
1 #!/usr/bin/env python3

Ken Gu, Eunice Jun, and Tim Althoff

Suggested Multiverse Specification Edits

2 import pandas as pd
3 import numpy as np
4 import statsmodels.api as M @ Universe Mode Template Mode Edit Mode Save Save and Compile Legend
Z if name__ == '__main__"': Old t?mpl,a}_e'PyA(R,e?q.on!!)‘ New temp'a‘ef.‘(,‘?ead only)
7 # read data file 9 import pandas as pd 8 #!/usr/bin/env python3
8 df = pd.read_csv('data.csv') 10 import numpy as np 9 import pandas as pd
9 # remove outliers based on std 11 import statsmodels.api as sm 10 import numpy as np
10 df = df[np.abs(df.y - df.y.mean()) <= (2. 12 11 import statsmodels.api as smf
11 13 if __pame__ == '__main__': 12
12 # fit a simple ordinary least squares mod 14 # read data file 13 if __name__ == '__main__':
1 q I 15 df = pd.read_csv('data.csv') 14 # read data file
14 model = sm.OLS(dfRy, X).fit() 16 # ——— (A) std 15 df = pd.read_csv('data.csv')
15 17 # remove outliers based on std 16 # —— (A) std
9 18 df = dflnp.abs(df.y - df.y.mean()) <= ({{ 17 # remove outliers based on std
New universe_5.py (Read on| 19 18 df = df[np.abs(df.y - df.y.mean()) <= ({{
1 #!/usr/bin/env python3 [l 20 # -— (A) igr 19
2 import pandas as pd 21 # remove outliers based on iqr 20 # -—— (A) iqr
3 import numpy as np 22 igr = np.subtract(xnp.percentile(df.y, [7 21 # remove outliers based on iqr 1
4 import statsmodels.api as smf 23 median = np.median(df.y) 22 iqr = np.subtract(xnp.percentile(df.y, [7
5 24 df = df[abs(df.y - median) <= {{cutoff}} 23 median = np.median(df.y)
6 if __name__ == '__main_ ': 25 24 df = dflabs(df.y - median) <= {{cutoff}}
7 # read data file 26 # ——— (B) OLS 25
8 df = pd.read_csv('data.csv') 27 # fit a simple ordinary least squares mod 26 # ——— (B) OLS
9 # remove outliers based on std 2 27, # fit a simple ordinary least squares mod
10 df = dflnp.abs(df.y — df.y.mean()) <= (2. 29 model = sm.OLS(de, I).fit() 1 z model = Smf.oLs (FYNRIE, Ga€a=df).fit()
11 30 29
12 # fit a simple ordinary least squares mod
1 model = 5iif.oLs (IR, BEEEZdf).fit()
14

Figure 5: UNIVERSE-TO-MULTIVERSE DIFF Interface. An analyst makes changes to their universe to use the statsmodels formula
API and runs boba diff to abstract and propagate their fixes back to the multiverse specification. This loads the various visual
components in this figure. The analyst can view their edit changes via marked up code panels that show the code differences
between the old unedited universe (A1) and the new edited universe (A2). Red highlighted code indicates delete edits while green
highlighted code indicates insert edits. Yellow highlights show update edits and pink highlights show move edits. The analyst
can then navigate via the navigation buttons (C) to view the suggested edits to the new multiverse specification (B2), the contents
of which is generated from their universe edits. The interface shows these suggestions by highlighting the edits between the
unedited multiverse specification (B1) and the new suggested multiverse specification (B2). Highlights in the old universe
matches with those in the old multiverse specification (e.g., D1 and D3). Likewise, highlights in the new edited universe matches
with those in the suggested multiverse specification (e.g., D2 and D4). Analysts can make any additional edits to the suggestions
in another editor (not shown) before saving the new multiverse specification to disk. Without UNIVERSE-TO-MULTIVERSE DIFF,
analysts would need to remember all their edits in a universe and how those edits propagate to the multiverse specification.
UNIVERSE-TO-MULTIVERSE DIFF makes this process easier by automatically suggesting the necessary propagation of edits.

UNIVERSE-TO-MULTIVERSE DIFF’s interface has three modes. There
is a universe mode for viewing changes in the universe and a tem-
plate mode for viewing suggested changes in the multiverse speci-
fication. The changes are shown as two-panel diffs. Additionally,
there is an edit mode to make final edits (if necessary) to the sug-
gested changes. The analyst navigates between modes with buttons
in the top right (Figure 5C). The analyst may view the universe
mode to best understand the universe-level changes they made,
then proceed to the template mode to see how these changes are
propagated to the multiverse specification, before finally entering
the edit mode to finalize suggestions.

In the universe mode, the analyst starts with a better grasp of
all the edits they made in the universe through viewing a code
diff of their universe. The analyst can compare a panel containing
highlighted code of the unedited universe (Figure 5A1) with a panel
containing highlighted code of the edited universe (Figure 5A2).

Highlights to the code show where insertion (green), deletion (red),
move (pink), and update (yellow) edits are made (e.g., Figure 5D1-2).

In the template mode, the analyst can view how their changes
in the universe are suggested in the multiverse specification. The
analyst can compare a panel containing highlighted code of the
old multiverse specification (Figure 5B1) with a panel containing
highlighted code of the suggested new multiverse specification
(Figure 5B2). The highlights for the old multiverse specification
are propagated from the unedited universe (e.g., Figure 5D1 to D3).
Analogously, the code and highlights for the new multiverse speci-
fication are propagated from the edited universe (e.g., Figure 5D2
to D4).

Finally, in the edit mode, the analyst can interact with a writable
editor that contains the contents of the suggested multiverse speci-
fication. We implement a separate mode for editing to encourage
a workflow in which the analyst is aware of their changes to the

Understanding and Supporting Debugging Workflows in Multiverse Analysis

universe and how those changes affect the multiverse specification.
To support this further, we include a button for saving the new
multiverse specification to disk (based on contents in the editor
panel) and a button for saving and compiling only in the edit mode.

Beyond navigating these modes, the analyst can navigate be-
tween panels via the highlighted code edits. Highlighted code edits
that correspond to the same code between panels are linked. For
example, move edits in the old and new universe specifications are
linked. When a highlighted edit is double-clicked, the linked edit
in another panel will appear at the center of editor.

To implement MULTIVERSE DEBUGGER, because we need to prop-
agate changes in the universe to specific decision options in the
multiverse specification, we must identify decision options in the
edited universe. To achieve this, MULTIVERSE DEBUGGER compares
abstract syntax trees (ASTs) and lines of code of the edited and
buggy universe. To compare ASTs, we adapt the gumtree algorithm,
a popular source code differencing algorithm based on matching
ASTs [21]%. To compare lines, we use Python’s difflib [2] library’s
mdiff function. Details of the UNIVERSE-TO-MULTIVERSE DIFF algo-
rithm are in Appendix C.

4 LAB STUDY: RESEARCH QUESTIONS AND
METHODS

Using our prototype MULTIVERSE DEBUGGER, we conduct a lab study
to more specifically understand multiverse debugging workflows.
Our primary goal was not to evaluate MULTIVERSE DEBUGGER but
rather to create a potential improvement to debugging multiverse
analysis in a tangible tool such that analysts could more concretely
raise issues, benefits, and design guidelines that are tractable for
future tool builders. Additionally, we wanted to allow analysts to
explore alternative workflows and elicit responses regarding how
features in MULTIVERSE DEBUGGER could enable or affect such a
workflow.
Three research questions guide our study design and analysis.

e RQ1 - Challenges: What challenges do analysts need to
overcome when debugging multiverse analyses? Specifically,
do analysts really face the challenges we hypothesized based
on prior work, our experiences, and initial correspondences
with mutliverse practitioners and tool developers? What
additional challenges do they face?

e RQ2 - Workflows: What workflows do analysts gravitate
towards?

e RQ3 - Tool: To what extent do features like those in MULTI-
VERSE DEBUGGER address debugging challenges? How does
MULTIVERSE DEBUGGER affect analysts’ workflows?

The first two research questions are more open-ended and ex-
ploratory whereas the last research question assesses the benefits
of MULTIVERSE DEBUGGER’s design interventions and opportunities
for further improvement.

Participants. Given that the population of multiverse analysis
authors is relatively small, we focused on recruiting analysts who

2We release a Python re-implementation of the gumtree algorithm with adaptations
for UNIVERSE-TO-MULTIVERSE DIFF available at https://github.com/behavioral-data/
multiverse-tooling/tree/main/src/gumtree

CHI 23, April 23-28, 2023, Hamburg, Germany

were interested in learning about multiverse analysis and repre-
sented potential adopters of multiverse analysis. We contacted data
analysts through analysis-related mailing lists at our institution. In
the initial interest form, we asked analysts to self-rate their statis-
tical background on a 5-point scale (higher being more familiar).
In this scale 4 described analysts who have taken graduate-level
courses related to statistical analysis, and 5 described analysts hav-
ing multiple years of experience with real-word projects involving
statistical and data analysis. We also asked analysts to rate their
familiarity with R or Python on a 5-point scale with 1 “being equiv-
alent to have taken an introductory course” and 5 being having “5+
years of industry experience”. From the interest forms, we further
selected participants with strong backgrounds in statistical anal-
ysis (self-rated 4s and 5s) and comfort with Python or R. A total
of 13 analysts participated and their background is summarized in
Table 1.

Procedure. The study was conducted in a lab using a designated
MacBook Pro computer on a 27-inch monitor. We allowed partici-
pants to use the programming language (i.e., R or Python) of their
choice and installed what they needed. Analysts primarily used
R Studio or Visual Studio Code for their integrated development
environment. Before inviting analysts into the lab, we ensured they
were familiar with our setup. We wanted to create a debugging
environment that was as close to their own experiences.

For materials, we gathered two real-world multiverses from real-
world analyses [28, 36] and we created buggy R and Python versions.
To introduce realistic bugs, we searched Stack Overflow [6] with
relevant keywords and online statistics blogs with consolidated
lists of errors [14, 15] to find common bugs encountered during
typical statistical analyses. We make the buggy multiverses publicly
available and explain the multiverse preparation process in more
detail in Appendix D.

The study was structured into an initial tutorial phase, followed
by two separate debugging task phases that differ in whether the
analyst was introduced to MULTIVERSE DEBUGGER and was able to
use it. We followed this protocol to observe analyst workflows both
prior to introducing MULTIVERSE DEBUGGER and afterwards.

At the beginning of the study (tutorial phase), we guided an-
alysts through a tutorial that introduced the multiverse analysis
paradigm and how to use Boba. The tutorial explained how to spec-
ify decisions and decision options using Boba syntax. To ensure
analysts understood the concepts behind multiverse analysis and
felt comfortable using Boba, we asked analysts to update a Boba
multiverse specification to add another decision option. We also
walked analysts through Boba’s compile and execute commands.

Next, we asked analysts to debug a realistic multiverse analysis
with bugs (Phase 1). In this first part of the study, analysts had 25 to
35 minutes to address as many bugs as they could with the existing
Boba tools. Analysts debugged the first multiverse on their own
and then completed a survey about their experience.

Afterwards, in Phase 2, the first author gave an overview of
MULTIVERSE DEBUGGER and how to invoke each command and use
the interfaces. Analysts were explicitly told they were free to debug
however they wanted. Subsequently, depending on their progress
in the first portion (i.e., whether they solved the bugs in the first
multiverse), analysts were asked to either continue debugging the

CHI 23, April 23-28, 2023, Hamburg, Germany

Ken Gu, Eunice Jun, and Tim Althoff

Table 1: Participant information. Proficiency was self-rated on a 5-point scale with 5 being the highest.

ID Gender Occupation/Background Programming Lang. Lang. Proficiency Statistics Proficiency
A01 Female Researcher in Data Science Python 4 4
A02 Male Masters Student in Data Science Python 5 5
A03 Female Masters Student in Industrial Engineering Python 4 4
A04 Female PhD Student in Information Science Python 5 5
A05 Male PhD Student in Public Policy R 3 5
A06 Female PhD Student in Quantitative Ecology R 3 4
A07 Female PhD Student in Psychology R 5 5
A08 Female Data Analystin Medicine R 5 5
A09 Female Data Scientist R 3 4
A10 Female PhD Student in Applied Mathematics Python 4 4
A1l Male Data Scientist 5 5
A12 Male PhD Student in Biostatistics Python 4 5
A13 Male Professor in Biostatistics 5 5

first multiverse or debug a second multiverse. More time was spent
in the first portion such that analysts can become familiar with
Boba and the multiverse paradigm. This also ensured analysts had
time to experience challenges specific to multiverse debugging.
Finally, analysts completed a survey about their experience using
MULTIVERSE DEBUGGER.

We encouraged analysts to talk about their process when they
could. If not, they were regularly prompted to speak about their pro-
cess and describe their thinking. After each debugging session, we
also asked open-ended questions with the objective to understand
the processes and challenges of multiverse debugging. We gave
analysts minimal help beyond pointing out the tools and resources
they have available (i.e., the IDE debugging tools, the Internet, and
Boba documentation). If analysts were stuck diagnosing and fixing
the bug at the single script level (Figure 3D3) for longer than 15
minutes, we guided analysts by pointing out what the bug is to
allow insights along all parts of the workflow.

The study lasted approximately 2 hours. Analysts received a $50

Amazon gift card as compensation for their time. This study was
determined exempt through the IRB at our institution. We include
all lab study materials in our supplemental material.
Qualitative Coding Process. With the exception of one partici-
pant (A10) who did not consent to be recorded, we recorded partic-
ipants’ audio and screens. In addition to writing notes of analysts’
behaviors while conducting the study, the first author viewed the
recordings and transcribed all episodes of interest to the debugging
process. To understand common themes that emerged, we used it-
erative open coding. The themes we observed highlighted analysts’
challenges in debugging multiverse analysis, workflows that ana-
lysts gravitated towards, and finally how MULTIVERSE DEBUGGER
addressed these challenges.

5 LAB STUDY: RESULTS

Our lab study identifies four challenges to debugging multiverse
analyses and two approaches analysts take to debug. We also ob-
serve how MULTIVERSE DEBUGGER affects analysts’ workflows and
enables them to overcome the debugging challenges. These findings
inform our updated model of the multiverse debugging workflow,

as summarized in Figure 6. The key differences between the up-
dated model and the initial hypothesized model (Figure 3) are the
expanded steps in diagnosing a multiverse (Figure 6D2-4) (Sec-
tion 5.2.1), the additional path to editing a multiverse specification
directly (Figure 6D7-8) (Section 5.2.2), and the additional choice of
selectively executing a semantically meaningful subset of universes
(Figure 6D1) (Section 5.3.1).

5.1 What challenges do analysts need to
overcome when debugging multiverse
analyses?

We found that analysts experienced difficulty with two of the three
hypothesized challenges: detecting bugs quickly (Challenge 1 in
Section 2.4) and finding the root causes of bugs (Challenge 2 in
Section 2.4). In order to find the cause of bugs, we found that ana-
lysts needed to group unique errors and identify shared decisions
of an error. Maintaining a mental model of the multiverse was also
challenging for analysts.

5.1.1 Minimize latency between executing a multiverse and detecting
errors. Running the entire multiverse took a non-trivial duration
of time, making it difficult for analysts to receive quick feedback
on what errors existed. To minimize this latency, some analysts
picked an arbitrary number of universes to run [A04, A07, A12]. For
instance, prior to using MULTIVERSE DEBUGGER, A04 was reluctant
to rerun the multiverse after fixing a bug. Instead, A04 spot-checked
three universes. Similarly, A01 reduced the size of the multiverse
by commenting out decision options that were irrelevant to the bug
she was addressing.

5.1.2 Group unique errors and find the number of universes affected.
In the existing workflow without MULTIVERSE DEBUGGER, analysts
have no grasp on what the unique errors are and the number of
universes that are affected. Thus, analysts do not know what a
bug fix would even solve and can be left feeling overwhelmed.
AO05 captures this perfectly: “Seeing that there are 1500 errors but
not having any idea how many were unique makes the process feel
overwhelming.”

Multiple analysts while debugging without MULTIVERSE DEBUG-
GER, and prior to learning about the tool’s existence, asked if there

Understanding and Supporting Debugging Workflows in Multiverse Analysis

Updated Debugging Workflow

CHI 23, April 23-28, 2023, Hamburg, Germany

compile

—
execute selectively
compile OR locate error in make edit
P! execute all specification s
~ - focus on universe
roup similar @
@ grror‘; ‘ workflow

1 spec summary
————
y | —
. ~ —
. —_—
—
—
find shared
D3) decisions propagate
in errors edits
affected universes
k\ [A shared
affected universes 1
§ N
- | I A shared

affected universes

3!

shared decisions

L !
) —

focus on
single error l
and universe

buggy
universe

diagnose
and fix

Figure 6: Updated Model of Debugging Workflow. The updated workflow model shows a revised and extended version of the
multiverse debugging workflow, enabled through our lab study and MULTIVERSE DEBUGGER. Compared to the hypothesized
workflow model (Figure 3), the model derived from the lab study has multiple refinements . First, beyond executing all universes
(D1 in Figure 3), the execution step (D1) now captures analysts’ propensity to run a select few universes via DECISION COVER
and interest in running their own subset based on specific decision options. Next, our initial understanding of diagnosing the
multiverse (D2 in Figure 3) is expanded to include steps of grouping similar errors (D2), using this grouping along with the
specification summary and associated universe information to find shared decisions in error groups (D3), before prioritizing
an error and focusing on a single universe (D4). These steps also surfaced an additional challenge of analysts’ trouble in
understanding the composition of the multiverse. Lastly, to capture analysts’ tendency to make fixes directly in the multiverse
specification, there is now an additional path in which after observing error messages, an analyst locates the error in the
multiverse specification (D7) and then makes the bug patches there directly (D8). Analysts can also go back to the universe
workflow (D9) to leverage their comfort with single universe debugging tools.

edited
universe

was a way to see the errors grouped together or mentioned lack of
grouping as a challenge [A02, A03, A05, A08, A11, A12].

5.1.4 Understand the composition of the multiverse. Understanding
the composition of the multiverse means to "understand the compo-
nents and processes that define and make up this multiverse" [25].
For analysts, the composition was not obvious from the information
available. To aid in debugging, analysts referenced the multiverse
specification file, the specification summary, and the universes to
build up a mental map of the multiverse. For A01, this mental map
was essential in her debugging process: “Many of these different
paths have co-dependencies so I'm not quite sure yet which one of
these is truly the issue"”. To understand common errors in universes,
analysts consulted error messages and the specification summary

5.1.3 Identify shared decisions of an error. Once analysts found an
error common across multiple universes, they tried to isolate the
decision choices responsible for producing the error (Figure 6D3).
To do so without MULTIVERSE DEBUGGER, analysts cross-referenced
the error messages with the specification summary [A02, A05, A06,
A11, A12, A13]. Most participants gave up because the specification
summary was “hard to read”, especially when it contained hundreds
of entries with no semantically meaningful structure.

CHI 23, April 23-28, 2023, Hamburg, Germany

to find a common error among several universes. To locate the
potential source that caused the error and understand how a spe-
cific universe was generated, analysts looked at the universes, the
multiverse specification, and the specification summary. Because
the information conveying the composition of the multiverse was
scattered, many analysts mentioned processing and navigating the
disjointed information as a challenge [A01, A02, A05, A06, A0S,
A09, A11, A13]. From just these sources alone, analysts struggled
to construct a mental model of how decision options were related
and contributed to errors common across multiple universes [A01,
A02, A05]. A05 stated how it was “not naturally obvious that there
are duplicates stemming from the exact same piece of code’.

As a result, analysts mentioned desiring features that can be
broadly categorized into two groups: features that connect infor-
mation sources and features that can help visualize the multiverse.

For connecting information, analysts desired a feature that en-
abled them to locate the code in the multiverse specification which
ultimately resulted in an error [A03, A07, A08]. Similarly, others
wanted an explicit mapping between code in the universe file and
code in the multiverse specification [A02, A03]. For desired vi-
sualization features, A11, for example, mentioned wanting a tree
structure (like in Figure 1) that summarizes the multiverse and
associated artifacts: “What if I had a tree diagram that I could select
which universes does this error happen in that lights up the tree, and
show me that they all have this condition.”

5.2 'What workflows do analysts gravitate
towards?

5.2.1 Analysts address bugs in order of error messages but seek new
ways to prioritize bugs. Without MULTIVERSE DEBUGGER, analysts
often inspected the first error message and set out to fix it [A01,
A02, A03, A04, A05, A06, A08, A09, A10, Al1, A12, A13]. A01 found
this approach comfortable and reasonable, saying “I want to kind of
fully tackle that one and then resolve it and then go on to the next one
as opposed to having a higher-level plan.” However, others wanted
a more strategic way to prioritize bugs, which required a more
holistic picture of bugs across multiple universes [A03, A09, A12,
A11, A13]. A11 explained his debugging priority was to solve the
error affecting many universes:

“I am more interested in spending my time addressing

the bugs that occur in several universes versus the bugs

in the first universe but I did not have a good sense for

how to determine that, so I just went to the first error”

To prioritize, analysts expressed interest in grouping errors to-
gether to see unique errors [A02, A03, A05, A08, A11, A12] (Fig-
ure 6D2). Once they have a sense of the unique errors, analysts
wanted to see what was similar and different among universes that
encountered the same error in order to isolate the shared buggy
code [A02, A05, A06, A11, A12, A13] (Figure 6D3). Some analysts
[A02, A10, A11] did so by comparing entries in the specification
summary that corresponded to universes that had a common error.
A02 went so far as to write a script that parsed the specification
summary with error “lines” (i.e., error messages):

“What I was trying to do was to read which (error) lines
contain the options and just parse those lines. I was
going to write a small script to just parse the lines.”

Ken Gu, Eunice Jun, and Tim Althoff

This idea matches our ERROR MESSAGE AGGREGATION feature that
they had not yet learned about.

5.2.2 Analysts adopt different strategies based on perceived bug
severity. When analysts perceived an error to have an easy fix, they
directly updated the multiverse specification file without consulting
a specific universe script at all [A02, A03, A04, A07, A10, A13]
(Figure 6D7-8). Analysts stayed in the multiverse specification file
because they knew they had to update it eventually anyway. For
example, A03 wanted to reduce effort: “because the template is the
place where we generate the whole universe so I think as long as
the bug is fixed in the template, the universe will be free of bugs”.
Meanwhile, A07 expressed she preferred staying in the multiverse
specification because she observed a lot of shared code occurred
early in the multiverse specification.

“I could see that the branching points weren’t actually
that many if you scroll down through the template file.
I saw that there were only really the model points that
were breaking routes. If I can get everything before those
points to be okay, and then everything subsequently can
be re-edited to the template.”

When finding errors, analysts also simplified their diagnosing pro-
cess to just locating the line referenced in the traceback in the mul-
tiverse specification (Figure 6D7). However, because the multiverse
specification is not executable, not every bug could be understood
and solved there.

For more involved errors requiring analysts to run large code
snippets or inspect intermediate variable values, analysts defaulted
to finding and debugging a specific universe. Of the 13 analysts, 12
(everyone except A07) attempted to fix a bug in a specific universe
before making similar fixes to the multiverse specification file. Fo-
cusing on one universe at a time was more familiar to analysts who
could rely on their idiosyncratic debugging approaches, such as
using print statements [A02, A03, A04, A12], the interactive debug-
ger [A02, A10], or the interactive console (i.e., the R console and
the Python console) [A03, A05, A06, A08, A09, A11, A13]. Analysts
stayed in the same universe until they fixed a specific bug [A01,
A02, A03, A06, A10, A11, A12, A13] or ensured the universe was
completely bug-free [A04, A05, A08, A09]. Once analysts were sat-
isfied with their changes, they updated the multiverse specification
file, re-compiled and re-started the debugging loop.

In some situations, analysts misjudged the complexity of the
error and started with the multiverse specification but then went
to a universe workflow (Figure 6D9) after realizing it would have
been more effective [A01, A02, A05, A09, A11, A13]. In these cases,
analysts wanted to fully leverage their single universe debugging
workflows.

5.3 To what extent do features like those in
MULTIVERSE DEBUGGER address debugging
challenges? How does MULTIVERSE
DEBUGGER affect analysts’ workflows?

Analysts’ debugging patterns, which were present without MurTI-
VERSE DEBUGGER but further supported by MULTIVERSE DEBUGGER,
are described in our updated model of the debugging workflow
(Figure 6). Analysts leveraged ERROR MESSAGE AGGREGATION to

Understanding and Supporting Debugging Workflows in Multiverse Analysis

group similar errors (Figure 6D2), find shared decisions in an error
(Figure 6D3), before then prioritizing an error and focusing on one
universe (Figure 6D4). Moreover, analysts used DECISION COVER
to detect errors faster (Figure 6D1) which inspired them to desire
even greater control on what subsets of universes to run. However,
analysts seldom used UNIVERSE-TO-MULTIVERSE DIFF and elected
to propagate universe edits manually (Figure 6D6).

5.3.1 DECISION COVER reduces latency in detecting bugs and speeds
up the development and debugging loop. Nearly all analysts found
DECISION COVER feature helpful in expediting the incremental de-
velopment and debugging loop [A01, A02, A03, A04, A06, A07,
A08, A09, A10, A11, A12, A13]. Analysts found the DECISION COVER
useful for finding the most common errors quickly and expressed
interest in using it as the first step in debugging multiverse anal-
yses in the future. For example, A07 expressed, “I really like the
ability use boba —-cover which helped pinpoint the most common
errors.” Furthermore, for A04, the DECISION COVER enabled her to
work directly in the multiverse specification: “These tools drasti-
cally reduced the amount of feedback loop time. Instead of editing the
individual universe files, I mainly worked from the template file.”

Analysts expressed wanting greater control in specifying which
subset of universes to execute [A01, A04, A07]. Furthermore, other
analysts wished they could version their error messages to maintain
the results and errors from a long multiverse run [A01, A12].

5.3.2 ERROR MESSAGE AGGREGATION helps analysts see unique errors
and isolate potential causes to specific decision options. Analysts
used ERROR MESSAGE AGGREGATION to identify (i) what the unique
errors were and (ii) how many universes each error message af-
fected. Knowing the unique errors helped analysts identify familiar
error messages they could quickly address [A13] or prioritize error
messages that affected the greatest number of universes [A01, A05,
A07, A11]. For instance, A01’s strategy was the former: “After seeing
the breakdown of the different errors, I would prioritize them and in
my head, get a sense of if I fix this fundamental error, would it fix
other errors.”

We designed ERROR MESSAGE AGGREGATION anticipating the chal-
lenge of grouping similar errors and finding shared decisions in a
common error. All 13 analysts liked ERROR MESSAGE AGGREGATION
and said they would want to use it in their workflow. A05, who was
frustrated by his initial lack of awareness of which bugs overlapped
with each other, especially liked the ERROR MESSAGE AGGREGATION:
“The error aggregate is definitely the most useful because it allows
for seeing not only the groups of errors but how many universes are
affected.”

A particularly illustrative example was A02. Prior to using MuL-
TIVERSE DEBUGGER, A02 wrote a custom script to parse the error
messages and the specification summary for 15 minutes before run-
ning out of time. When he started to use MULTIVERSE DEBUGGER,
A02 found ERROR MESSAGE AGGREGATION especially useful: “I really
like that you could get a high-level overview of all the choices that
are getting affected.” Although analysts found ERROR MESSAGE AG-
GREGATION beneficial, they also recommended using visualizations
or changing the button layout to make the interface more intuitive
[A01, A03, A06, A12, A13].

CHI 23, April 23-28, 2023, Hamburg, Germany

5.3.3 UNIVERSE-TO-MULTIVERSE DIFF is not as necessary to abstract
and propagate patches. Analysts found UNIVERSE-TO-MULTIVERSE
DIFF the least useful. One analyst [A02] used the tool to mainly
test the feature. As expected, when analysts stayed in the multi-
verse specification, UNIVERSE-TO-MULTIVERSE DIFF was unneces-
sary. When analysts dove into specific universes, analysts had mixed
feelings about UNIVERSE-TO-MULTIVERSE DIFF. On one hand, A07,
who in her own workflow uses git diffs only in the CLI, thought
UNIVERSE-TO-MULTIVERSE DIFF would help people who more “vi-
sual” On the other hand, A12 thought UNIVERSE-TO-MULTIVERSE
DIFF could be helpful if he spent more time in a universe and needed
to remember more changes: “Most of the cases right now you give
me are simple but once the debug time is too long then you’ll easily
forget how you did the changes. That would be the most useful case.”

6 DISCUSSION

In this work, we built a prototype tool and conducted a subsequent
lab study to understand and address multiverse debugging chal-
lenges. From our lab study, which leveraged our tool as a design
probe, we developed an updated model of multiverse debugging
workflows (Figure 6). In this section, we synthesize the results from
our lab study and share implications for improving multiverse anal-
ysis tools. We highlight four key design implications that would
better support multiverse debugging, review the limitations of our
work, and discuss future work.

6.1 Design Implications

6.1.1 Tools should reduce the latency in encountering multiverse
errors. The long time to detect an error message (step D1 in Figure 6)
was a challenge we hypothesized (Section 2.4) and later confirmed
in our lab study (Section 5.1.1). In the lab study, we even found
analysts trying their own ways to increase the speed of detecting
error messages (i.e.,, commenting out code). We also found the
DECISION COVER feature to be especially useful because it enabled
this faster detection (Section 5.3.1). Future tools should consider
features that reduce the latency to detect erroneous multiverse code
whether that is through something like DECISION COVER or letting
analysts run subsets of universes (something we discuss as another
design implication in Section 6.1.4)

6.1.2 Tools should summarize unique errors and highlight shared de-
cision options. The challenge of understanding what unique errors
exist (step D2 in Figure 6) and what are common decision options
(step D3 in Figure 6) was pervasive in the lab study (Section 5.1.2).
As a result, MULTIVERSE DEBUGGER 'S ERROR MESSAGE AGGREGA-
TION feature which directly addresses this was appreciated by all
analysts (Section 5.3.2). Multiverse debugging tools will benefit
from some form of error message aggregation.

6.1.3 Tools should help analysts understand the composition of the
multiverse. A key challenge that surfaced among analysts in the lab
study was understanding the composition of the multiverse; that
is, how the specification of decisions and options led to the genera-
tion of universes (Section 5.1.4). While we hypothesized the need
to understand the multiverse would contribute to the cognitive
load in propagating edits (Section 2.4), our lab study revealed this

CHI 23, April 23-28, 2023, Hamburg, Germany

understanding is critical much earlier in the debugging cycle (Fig-
ure 6D2-4) and less important when propagating edits (Figure 6D6)
(Section 5.3.3). Specifically, in diagnosing an error message, analysts
needed this comprehension to begin understanding what decision
options may have caused an error or how code may be shared
across certain universes as a result of the multiverse specification.
Moreover, multiple analysts expressed connecting the multiverse
structure (i.e., showing the structure relating universes, decisions,
and decision options) to the multiverse specification code as some-
thing that would aid in their debugging process (Section 5.1.4).

Informed by our lab study, future tools that aid in understanding
the composition of the multiverse should connect the multiverse
structure with the multiverse specification. One opportunity to
support understanding is through interactive visualizations that
connect a visualization of the multiverse structure with a visual
representation of the multiverse specification code. Such a visu-
alization would also support analysts’ iterative authoring process
[32, 33], enabling analysts to understand how the composition of
the multiverse changes over time as a result of code changes. Prior
work has also highlighted the need for real-time and interactive
visualization of the multiverse structure [48].

While researchers have started to develop multiverse-specific
visualizations [25, 38], none have focused on interactions showing
the multiverse structure and the specific code implementing them
in the multiverse specification. Future work should explore how to
best communicate the specified multiverse structure in relation to
the specification code.

6.1.4 Support Analysts in Finding Relevant Universes and Decision
Options in the Multiverse. Another common theme observed in the
lab study was analysts’ need to have control in finding subsets of
universes or subsets of decision options. For example, to better
isolate a potential cause for an error message, analysts expressed
wanting to know what subset of universes to run that correspond
to specific combinations of analysis decisions (Section 5.3.1). This
is difficult because to find that subset, analysts currently need to
either consult the specification summary and navigate through
hundreds of entries or write custom functions to parse this informa-
tion. On the other hand, MULTIVERSE DEBUGGER ’s ERROR MESSAGE
AGGREGATION feature, which analysts ubiquitously found helpful
(Section 5.3.2), is a realization of finding a subset of meaningful
decision options from a subset of universes.

Therefore, core activities involved in multiverse debugging re-
quire finding a subset of universes based on specified decision
options or finding a subset of decision options based on specifying
a subset of universes. Tools that enable this process would improve
analysts’ capability to and speed in diagnosing error messages. As
such, future tools should incorporate effective multiverse selection
based on universe or decision option constraints.

6.2 Limitations

MULTIVERSE DEBUGGER focuses on extending Boba to understand
multiverse debugging workflows. Therefore, its features are all
command-line based. For analysts who are less comfortable with
programming and more comfortable with workflows that involve
graphical user interfaces (e.g., Stata [7], SPSS [5]), MULTIVERSE
DEBUGGER may be difficult to use.

Ken Gu, Eunice Jun, and Tim Althoff

We note several limitations of our user study. First, the study
had a small sample size and consisted of people new to multiverse
analysis. As the number of people who perform multiverse analysis
is small, we determined an in-person lab study was the best way
to gather people, provide a tutorial on multiverse analysis and get
them up to speed with existing tools. Results, therefore, might be
different for multiverse experts. However, as multiverse analysis is a
relatively new analysis paradigm, there are very few experts to date
and an important focus lies on empowering a broad set of analysts
to employ multiverse analyses. Multiverse analysis is targeted to
those familiar with statistical practices who may want to adopt
this paradigm (which is our lab study population) and it is through
making the associated challenges easier (specification, analyzing
results, and debugging) that this paradigm will receive greater
adoption. Prior tools [24, 38, 48] improved workflows surrounding
specification and analyzing results but that adoption is still limited
in part due to debugging challenges that are not yet supported [48].
Understanding the debugging challenges of a potential adopter is
one step toward this larger goal.

Additionally, in order to facilitate a lab study of reasonable dura-
tion, we chose to conduct a same-day in-person study of 2 hours and
give analysts a largely pre-written multiverse. Future work should
explore debugging processes based on a multiverse the participant
is developing themselves as well as more complex multiverses. Fi-
nally, while the bugs introduced into the pre-written multiverses
reflected common analysis errors, they may not be representative
of those encountered in more complex or domain-specific analyses.
We hypothesize that the overall workflow will likely be similar but
analysts may want to focus even more on debugging individual
universes. In addition, UNIVERSE-TO-MULTIVERSE DIFF may be more
useful in these larger multiverses with more complex bug fixes.

6.3 Future Work

Towards enabling debugging for larger classes of bugs. MuL-
TIVERSE DEBUGGER helps analysts author a multiverse that is free
from execution errors. However, there could be bugs that do not
lead to execution errors, including bugs around statistical analysis
misspecification (e.g., a poorly specified model and model formula).
These bugs may not raise error messages but threaten the statistical
validity of the analysis. This type of bugs is not specific to multi-
verse analysis but relevant to all analysis paradigms. Recent tools
have been developed to improve statistical validity in traditional
analysis [26, 27] but more work is needed to help analysts detect
such bugs. Another class of bugs is related to errors in multiverse
specification. For example, an analyst may have intended to per-
form data filtering only for a subset of models but did not specify
that constraint in the multiverse specification. While there would
not be any execution errors, the universes affected may not reflect
the intended analysis. Future work could explore how to detect and
communicate these bugs to the analyst.

Exploring the trade-offs between universe level and multi-
verse level workflows. While most analysts favored debugging
with a single universe, we discovered in our lab study some an-
alysts tended to debug with the multiverse specification directly
(Section 5.2.2). Analysts’ tendency to focus on one level could also

Understanding and Supporting Debugging Workflows in Multiverse Analysis

be influenced by the tool they are working with. Boba [38] natu-
rally encourages a universe level workflow as the universes are
separated from the multiverse specification and are no different
than traditional analysis scripts. This lets analysts use their fa-
vorite tools and familiar workflows. However, the separation has
the drawback that the multiverse specification cannot be directly
executed. multiverse [48], in contrast, encourages a multiverse
level workflow and lets analysts run universes via library functions
in the same file in which the multiverse is specified. However, plac-
ing everything in one file puts multiverse specification logic and
analysis code all in a single file, which may even more difficult to
debug. Future work should explore these trade-offs between exe-
cutable higher-level multiverse specifications and the complexity
of navigation and debugging.

7 CONCLUSION

This paper focuses on debugging as a key, under-scrutinized barrier
to broader multiverse analysis adoption. To understand analysts’
challenges and debugging workflows, we build a prototype de-
bugging tool, MULTIVERSE DEBUGGER, and conduct a qualitative
lab study using MULTIVERSE DEBUGGER as a probe. This work con-
tributes the first user study to better understand, model, and support
the unique challenges that multiverse analysis poses for debugging.
In addition, we provide an open-source tool, MULTIVERSE DEBUG-
GER, that alleviates some of the observed challenges. We synthesize
findings to develop a model of multiverse debugging workflows and
associated challenges (Figure 6) and highlight design implications
for future tools to support multiverse analysis debugging.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers for their thoughtful
comments. We would also like to thank the members of the UW
Behavioral Data Science group and the UW PLSE group for their
feedback on this work. This research was supported in part by
NSF I1S-1901386, NSF CAREER 1IS-2142794, NSF CNS-2025022, NIH
R01MH125179, Bill & Melinda Gates Foundation (INV-004841), the
Office of Naval Research (#N00014-21-1-2154), a Microsoft Al for
Accessibility grant and a Garvey Institute Innovation grant.

REFERENCES

[1] 2006. Approximation Algorithms. In Combinatorial Optimization: Theory and
Algorithms. Springer, Berlin, Heidelberg, 377-413. https://doi.org/10.1007/3-540-
29297-7_16

[2] 2022. difflib — Helpers for computing deltas — Python 3.10.7 documentation.

https://docs.python.org/3/library/difflib.html

] 2022. Introduction — statsmodels. https://www.statsmodels.org/

] 2022. pandas - Python Data Analysis Library. https://pandas.pydata.org/

] 2022. SPSS Software. https://www.ibm.com/analytics/spss-statistics-software

] 2022. Stack Overflow - Where Developers Learn, Share, and Build Careers.

https://stackoverflow.com/

[7] 2022. Statistical software for data science | Stata. https://www.stata.com/

[8] Abdulaziz Alaboudi and Thomas D. LaToza. 2021. An Exploratory Study of
Debugging Episodes. http://arxiv.org/abs/2105.02162 arXiv:2105.02162 [cs].

[9] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 7604

(May 2016), 452-454. https://doi.org/10.1038/533452a Number: 7604 Publisher:

Nature Publishing Group.

Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On the

dichotomy of debugging behavior among programmers. In Proceedings of the

40th International Conference on Software Engineering. ACM, Gothenburg Sweden,

572-583. https://doi.org/10.1145/3180155.3180175

Chris van den Berg. 2020. String Grouper. https://github.com/Bergvca/string_

grouper

[11

[12

[13

—_

(17

[18

[19

[21

[22

CHI 23, April 23-28, 2023, Hamburg, Germany

Robert V. Binder. 1999. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc., USA.

Paul Alexander Bloom. 2022. Into the Multiverse: Methods for Studying
Developmental Neuroscience. ~ Ph.D. Columbia University, United States
— New York. https://www.proquest.com/docview/2656195811/abstract/
673E811D3C8B4B71PQ/1 ISBN: 9798426817869.

Zack Bobbitt. 2022. Python Guides. https://www.statology.org/python-guides/
Zack Bobbitt. 2022. R Guides. https://www.statology.org/r-guides/

Richard Border, Emma C. Johnson, Luke M. Evans, Andrew Smolen, Noah Berley,
Patrick F. Sullivan, and Matthew C. Keller. 2019. No Support for Historical Can-
didate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression
Across Multiple Large Samples. American Journal of Psychiatry 176, 5 (May 2019),
376-387. https://doi.org/10.1176/appi.ajp.2018.18070881

Nate Breznau, Eike Mark Rinke, Alexander Wuttke, Hung H. V. Nguyen, Muna
Adem, Jule Adriaans, Amalia Alvarez-Benjumea, Henrik K. Andersen, Daniel
Auer, Flavio Azevedo, Oke Bahnsen, Dave Balzer, Gerrit Bauer, Paul C. Bauer,
Markus Baumann, Sharon Baute, Verena Benoit, Julian Bernauer, Carl Bern-
ing, Anna Berthold, Felix S. Bethke, Thomas Biegert, Katharina Blinzler, Jo-
hannes N. Blumenberg, Licia Bobzien, Andrea Bohman, Thijs Bol, Amie Bostic,
Zuzanna Brzozowska, Katharina Burgdorf, Kaspar Burger, Kathrin B. Busch,
Juan Carlos-Castillo, Nathan Chan, Pablo Christmann, Roxanne Connelly, Chris-
tian S. Czymara, Elena Damian, Alejandro Ecker, Achim Edelmann, Maureen A.
Eger, Simon Ellerbrock, Anna Forke, Andrea Forster, Chris Gaasendam, Kon-
stantin Gavras, Vernon Gayle, Theresa Gessler, Timo Gnambs, Amélie Gode-
froidt, Max Grémping, Martin Grof3, Stefan Gruber, Tobias Gummer, Andreas
Hadjar, Jan Paul Heisig, Sebastian Hellmeier, Stefanie Heyne, Magdalena Hirsch,
Mikael Hjerm, Oshrat Hochman, Andreas Hovermann, Sophia Hunger, Christian
Hunkler, Nora Huth, Zséfia S. Ignacz, Laura Jacobs, Jannes Jacobsen, Bastian
Jaeger, Sebastian Jungkunz, Nils Jungmann, Mathias Kauff, Manuel Kleinert, Ju-
lia Klinger, Jan-Philipp Kolb, Marta Kolczynska, John Kuk, Katharina Kunifien,
Dafina Kurti Sinatra, Alexander Langenkamp, Philipp M. Lersch, Lea-Maria Lo-
bel, Philipp Lutscher, Matthias Mader, Joan E. Madia, Natalia Malancu, Luis
Maldonado, Helge Marahrens, Nicole Martin, Paul Martinez, Jochen Mayerl,
Oscar J. Mayorga, Patricia McManus, Kyle McWagner, Cecil Meeusen, Daniel
Meierrieks, Jonathan Mellon, Friedolin Merhout, Samuel Merk, Daniel Meyer,
Leticia Micheli, Jonathan Mijs, Cristobal Moya, Marcel Neunhoeffer, Daniel Niist,
Olav Nygard, Fabian Ochsenfeld, Gunnar Otte, Anna O. Pechenkina, Christo-
pher Prosser, Louis Raes, Kevin Ralston, Miguel R. Ramos, Arne Roets, Jonathan
Rogers, Guido Ropers, Robin Samuel, Gregor Sand, Ariela Schachter, Merlin Scha-
effer, David Schieferdecker, Elmar Schlueter, Regine Schmidt, Katja M. Schmidt,
Alexander Schmidt-Catran, Claudia Schmiedeberg, Jirgen Schneider, Martijn
Schoonvelde, Julia Schulte-Cloos, Sandy Schumann, Reinhard Schunck, Jirgen
Schupp, Julian Seuring, Henning Silber, Willem Sleegers, Nico Sonntag, Alexan-
der Staudt, Nadia Steiber, Nils Steiner, Sebastian Sternberg, Dieter Stiers, Dra-
gana Stojmenovska, Nora Storz, Erich Striessnig, Anne-Kathrin Stroppe, Janna
Teltemann, Andrey Tibajev, Brian Tung, Giacomo Vagni, Jasper Van Assche,
Meta van der Linden, Jolanda van der Noll, Arno Van Hootegem, Stefan Vogten-
huber, Bogdan Voicu, Fieke Wagemans, Nadja Wehl, Hannah Werner, Bren-
ton M. Wiernik, Fabian Winter, Christof Wolf, Yuki Yamada, Nan Zhang, Conrad
Ziller, Stefan Zins, and Tomasz Zéttak. 2022. Observing many researchers using
the same data and hypothesis reveals a hidden universe of uncertainty. Pro-
ceedings of the National Academy of Sciences 119, 44 (Nov. 2022), e2203150119.
https://doi.org/10.1073/pnas.2203150119 Publisher: Proceedings of the National
Academy of Sciences.

Joseph Cesario, David J. Johnson, and William Terrill. 2019. Is There Evidence
of Racial Disparity in Police Use of Deadly Force? Analyses of Officer-Involved
Fatal Shootings in 2015-2016. Social Psychological and Personality Science 10, 5
(July 2019), 586-595. https://doi.org/10.1177/1948550618775108 Publisher: SAGE
Publications Inc.

Egon Dejonckheere, Merijn Mestdagh, Marlies Houben, Yasemin Erbas, Madeline
Pe, Peter Koval, Annette Brose, Brock Bastian, and Peter Kuppens. 2018. The
bipolarity of affect and depressive symptoms. Journal of Personality and Social
Psychology 114, 2 (Feb. 2018), 323-341. https://doi.org/10.1037/pspp0000186
Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny
Chevalier. 2019. Increasing the Transparency of Research Papers with Explorable
Multiverse Analyses. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. ACM, Glasgow Scotland Uk, 1-15. https://doi.org/10.
1145/3290605.3300295

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Differencing. In
Proceedings of the International Conference on Automated Software Engineering.
Vasteras, Sweden, 313-324. https://doi.org/10.1145/2642937.2642982
Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Differencing. In
Proceedings of the International Conference on Automated Software Engineering.
Visteras, Sweden, 313-324. https://doi.org/10.1145/2642937.2642982

CHI 23, April 23-28, 2023, Hamburg, Germany

[23]

[24

[25]

[26]

[27]

[28

[29

[30

[31

o
&

[33]

[34]

[35]

[36

[37

[38]

[39]
[40]

[41]

Kiran Gadhave, Jochen Gortler, Zach Tyler Cutler, Carolina Nobre, Oliver
Deussen, Miriah Meyer, Jeff Phillips, and Alexander Lex. 2020. Predicting Intent
Behind Selections in Scatterplot Visualizations. https://doi.org/10.31219/osf.io/
mq2rk

Joachim Gassen. 2022. Researcher Degrees of Freedom Analysis. https://joachim-
gassen.github.io/rdfanalysis/index.html

Brian D. Hall, Yang Liu, Yvonne Jansen, Pierre Dragicevic, Fanny Chevalier, and
Matthew Kay. 2022. A Survey of Tasks and Visualizations in Multiverse Analysis
Reports. Computer Graphics Forum 41, 1 (2022), 402-426. https://doi.org/10.1111/
cgf.14443 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14443.
Eunice Jun, Maureen Daum, Jared Roesch, Sarah E. Chasins, Emery D. Berger,
Rene Just, and Katharina Reinecke. 2019. Tea: A High-level Language and Runtime
System for Automating Statistical Analysis. Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (Oct. 2019), 591-603.
https://doi.org/10.1145/3332165.3347940 arXiv: 1904.05387.

Eunice Jun, Audrey Seo, Jeffrey Heer, and René Just. 2022. Tisane: Authoring
Statistical Models via Formal Reasoning from Conceptual and Data Relationships.
arXiv:2201.02705 [cs, stat] (Jan. 2022). https://doi.org/10.1145/3491102.3501888
arXiv: 2201.02705.

Kiju Jung, Sharon Shavitt, Madhu Viswanathan, and Joseph M. Hilbe. 2014. Fe-
male hurricanes are deadlier than male hurricanes. Proceedings of the National
Academy of Sciences 111, 24 (June 2014), 8782-8787. https://doi.org/10.1073/pnas.
1402786111

Alex Kale, Matthew Kay, and Jessica Hullman. 2019. Decision-Making Under
Uncertainty in Research Synthesis: Designing for the Garden of Forking Paths. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI °19). Association for Computing Machinery, New York, NY, USA, 1-14.
https://doi.org/10.1145/3290605.3300432

Elise K. Kalokerinos, Yasemin Erbas, Eva Ceulemans, and Peter Kuppens. 2019.
Differentiate to Regulate: Low Negative Emotion Differentiation Is Associ-
ated With Ineffective Use but Not Selection of Emotion-Regulation Strate-
gies. Psychological Science 30, 6 (June 2019), 863-879. https://doi.org/10.1177/
0956797619838763 Publisher: SAGE Publications Inc.

Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Com-
plexity of Computer Computations: Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, and sponsored by the
Office of Naval Research, Mathematics Program, IBM World Trade Corporation,
and the IBM Research Mathematical Sciences Department, Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger (Eds.). Springer US, Boston, MA, 85—
103. https://doi.org/10.1007/978-1-4684-2001-2_9

Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, Denver Colorado USA,
1265-1276. https://doi.org/10.1145/3025453.3025626

Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling Messy
History in a Computational Notebook. In 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). 147-155. https://doi.org/10.
1109/VLHCC.2018.8506576 ISSN: 1943-6106.

Ruben Kleiman, Mike Brayshaw, Marc Eisenstadt, and Marc Eisenstadt. 1993.
Tales of Debugging from The Front Lines.

Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (Dec. 2006), 971-987. https://doi.org/10.1109/TSE.2006.116
Qisheng Li, Meredith Ringel Morris, Adam Fourney, Kevin Larson, and Katharina
Reinecke. 2019. The Impact of Web Browser Reader Views on Reading Speed and
User Experience. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM, Glasgow Scotland Uk, 1-12. https://doi.org/10.1145/
3290605.3300754

Yang Liu, Tim Althoff, and Jeffrey Heer. 2020. Paths Explored, Paths Omitted,
Paths Obscured: Decision Points & Selective Reporting in End-to-End Data
Analysis. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. ACM, Honolulu HI USA, 1-14. https://doi.org/10.1145/3313831.3376533
Yang Liu, Alex Kale, Tim Althoff, and Jeffrey Heer. 2021. Boba: Authoring
and Visualizing Multiverse Analyses. IEEE Transactions on Visualization and
Computer Graphics 27, 2 (Feb. 2021), 1753-1763. https://doi.org/10.1109/TVCG.
2020.3028985 arXiv: 2007.05551.

Microsoft. 2022. Monaco Editor. https://microsoft.github.io/monaco-editor/
Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You
Did Last Summer - An Investigation of How Developers Spend Their Time.
In 2015 IEEE 23rd International Conference on Program Comprehension. 25-35.
https://doi.org/10.1109/ICPC.2015.12 ISSN: 1092-8138.

Guiomar Niso, Rotem Botvinik-Nezer, Stefan Appelhoff, Alejandro De La Vega,
Oscar Esteban, Joset A. Etzel, Karolina Finc, Melanie Ganz, Remi Gau, Yaroslav O.
Halchenko, Peer Herholz, Agah Karakuzu, David Keator, Camille Maumet,
Christopher J. Markiewicz, Dr Cyril Pernet, Franco Pestilli, Nazek Queder, Tina
Schmitt, Weronika Sojka, Adina Svenja Wagner, Kirstie Whitaker, and Jochem

[46

[47

[48

[50

[51

]

Ken Gu, Eunice Jun, and Tim Althoff

Rieger. 2022. Open and reproducible neuroimaging: from study inception to
publication. https://doi.org/10.31219/0sf.io/pu5vb

OPEN SCIENCE COLLABORATION. 2015. Estimating the reproducibility of
psychological science. Science 349, 6251 (Aug. 2015), aac4716. https://doi.org/10.
1126/science.aac4716 Publisher: American Association for the Advancement of
Science.

Mark Otto and Jacob Thornton. 2022. Bootstrap. https://getbootstrap.com/
Chirag J. Patel, Belinda Burford, and John P. A. Joannidis. 2015. Assessment of
vibration of effects due to model specification can demonstrate the instability of
observational associations. Journal of Clinical Epidemiology 68, 9 (Sept. 2015),
1046-1058. https://doi.org/10.1016/j.jclinepi.2015.05.029

Gregory J Poarch, Jan Vanhove, and Raphael Berthele. 2019. The effect of bidialec-
talism on executive function. International Journal of Bilingualism 23, 2 (April
2019), 612-628. https://doi.org/10.1177/1367006918763132 Publisher: SAGE
Publications Ltd.

James R. Rae, Selin Giilgéz, Lily Durwood, Madeleine DeMeules, Riley Lowe,
Gabrielle Lindquist, and Kristina R. Olson. 2019. Predicting Early-Childhood
Gender Transitions. Psychological Science 30, 5 (May 2019), 669-681. https:
//doi.org/10.1177/0956797619830649 Publisher: SAGE Publications Inc.

Armin Ronacher. 2022. Welcome to Flask — Flask Documentation (2.2.x). https:
//Mlask.palletsprojects.com/en/2.2.x/

Abhraneel Sarma, Alexander Kale, Michael Jongho Moon, Nathan Taback, Fanny
Chevalier, Jessica Hullman, and Matthew Kay. 2021. multiverse: Multiplexing
Alternative Data Analyses in R Notebooks. Technical Report. OSF Preprints.
https://doi.org/10.31219/0sf.io/yfbwm type: article.

Tal Schuster, Ashwin Kalyan, Alex Polozov, and Adam Kalai. 2021. Programming
Puzzles. Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1 (Dec. 2021). https://datasets-benchmarks-proceedings.neurips.
cc/paper/2021/hash/3988c7f88ebcb58c6ce932b957b6£332- Abstract-round1.html
Martin Schweinsberg, Michael Feldman, Nicola Staub, Olmo R. van den Akker,
Robbie C.M. van Aert, Marcel A.L.M. van Assen, Yang Liu, Tim Althoff, Jeffrey
Heer, Alex Kale, Zainab Mohamed, Hashem Amireh, Vaishali Venkatesh Prasad,
Abraham Bernstein, Emily Robinson, Kaisa Snellman, S. Amy Sommer, Sarah M.G.
Otner, David Robinson, Nikhil Madan, Raphael Silberzahn, Pavel Goldstein, War-
ren Tierney, Toshio Murase, Benjamin Mandl, Domenico Viganola, Carolin Strobl,
Catherine B.C. Schaumans, Stijn Kelchtermans, Chan Naseeb, S. Mason Garri-
son, Tal Yarkoni, C.S. Richard Chan, Prestone Adie, Paulius Alaburda, Casper
Albers, Sara Alspaugh, Jeff Alstott, Andrew A. Nelson, Eduardo Arifio de la
Rubia, Adbi Arzi, Stépan Bahnik, Jason Baik, Laura Winther Balling, Sachin
Banker, David AA Baranger, Dale J. Barr, Brenda Barros-Rivera, Matt Bauer, Enuh
Blaise, Lisa Boelen, Katerina Bohle Carbonell, Robert A. Briers, Oliver Burkhard,
Miguel-Angel Canela, Laura Castrillo, Timothy Catlett, Olivia Chen, Michael
Clark, Brent Cohn, Alex Coppock, Natalia Cuguerd-Escofet, Paul G. Curran,
Wilson Cyrus-Lai, David Dai, Giulio Valentino Dalla Riva, Henrik Danielsson,
Rosaria de F.S.M. Russo, Niko de Silva, Curdin Derungs, Frank Dondelinger,
Carolina Duarte de Souza, B. Tyson Dube, Marina Dubova, Ben Mark Dunn,
Peter Adriaan Edelsbrunner, Sara Finley, Nick Fox, Timo Gnambs, Yuanyuan
Gong, Erin Grand, Brandon Greenawalt, Dan Han, Paul H.P. Hanel, Antony B.
Hong, David Hood, Justin Hsueh, Lilian Huang, Kent N. Hui, Keith A. Hult-
man, Azka Javaid, Lily Ji Jiang, Jonathan Jong, Jash Kamdar, David Kane, Gregor
Kappler, Erikson Kaszubowski, Christopher M. Kavanagh, Madian Khabsa, Ben-
nett Kleinberg, Jens Kouros, Heather Krause, Angelos-Miltiadis Krypotos, Dejan
Lavbi¢, Rui Ling Lee, Timothy Leffel, Wei Yang Lim, Silvia Liverani, Bianca
Loh, Dorte Lensmann, Jia Wei Low, Alton Lu, Kyle MacDonald, Christopher R.
Madan, Lasse Hjorth Madsen, Christina Maimone, Alexandra Mangold, Adri-
enne Marshall, Helena Ester Matskewich, Kimia Mavon, Katherine L. McLain,
Amelia A. McNamara, Mhairi McNeill, Ulf Mertens, David Miller, Ben Moore, An-
drew Moore, Eric Nantz, Ziauddin Nasrullah, Valentina Nejkovic, Colleen S Nell,
Andrew Arthur Nelson, Gustav Nilsonne, Rory Nolan, Christopher E. O’Brien,
Patrick O’Neill, Kieran O’Shea, Toto Olita, Jahna Otterbacher, Diana Palsetia,
Bianca Pereira, Ivan Pozdniakov, John Protzko, Jean-Nicolas Reyt, Travis Riddle,
Amal (Akmal) Ridhwan Omar Ali, Ivan Ropovik, Joshua M. Rosenberg, Stephane
Rothen, Michael Schulte-Mecklenbeck, Nirek Sharma, Gordon Shotwell, Martin
Skarzynski, William Stedden, Victoria Stodden, Martin A. Stoffel, Scott Stoltzman,
Subashini Subbaiah, Rachael Tatman, Paul H. Thibodeau, Sabina Tomkins, Ana
Valdivia, Gerrieke B. Druijff-van de Woestijne, Laura Viana, Florence Villeseche,
W. Duncan Wadsworth, Florian Wanders, Krista Watts, Jason D Wells, Christo-
pher E. Whelpley, Andy Won, Lawrence Wu, Arthur Yip, Casey Youngflesh,
Ju-Chi Yu, Arash Zandian, Leilei Zhang, Chava Zibman, and Eric Luis Uhlmann.
2021. Same data, different conclusions: Radical dispersion in empirical results
when independent analysts operationalize and test the same hypothesis. Or-
ganizational Behavior and Human Decision Processes 165 (July 2021), 228-249.
https://doi.org/10.1016/j.0bhdp.2021.02.003

R. Silberzahn, E. L. Uhlmann, D. P. Martin, P. Anselmi, F. Aust, E. Awtrey, S.
Bahnik, F. Bai, C. Bannard, E. Bonnier, R. Carlsson, F. Cheung, G. Christensen,
R. Clay, M. A. Craig, A. Dalla Rosa, L. Dam, M. H. Evans, L. Flores Cervantes, N.
Fong, M. Gamez-Djokic, A. Glenz, S. Gordon-McKeon, T. J. Heaton, K. Hederos,

Understanding and Supporting Debugging Workflows in Multiverse Analysis

[52]

[53]

[54]

[55

[56

[57]

M. Heene, A.]. Hofelich Mohr, F. Hégden, K. Hui, M. Johannesson, J. Kalodimos,
E. Kaszubowski, D. M. Kennedy, R. Lei, T. A. Lindsay, S. Liverani, C. R. Madan,
D. Molden, E. Molleman, R. D. Morey, L. B. Mulder, B. R. Nijstad, N. G. Pope, B.
Pope, J. M. Prenoveau, F. Rink, E. Robusto, H. Roderique, A. Sandberg, E. Schliiter,
F. D. Schénbrodt, M. F. Sherman, S. A. Sommer, K. Sotak, S. Spain, C. Spérlein, T.
Stafford, L. Stefanutti, S. Tauber, J. Ullrich, M. Vianello, E.-J. Wagenmakers, M.
Witkowiak, S. Yoon, and B. A. Nosek. 2018. Many Analysts, One Data Set: Making
Transparent How Variations in Analytic Choices Affect Results. Advances in
Methods and Practices in Psychological Science 1, 3 (Sept. 2018), 337-356. https:
//doi.org/10.1177/2515245917747646 Publisher: SAGE Publications Inc.

Uri Simonsohn, Joseph P. Simmons, and Leif D. Nelson. 2019. Specification
Curve: Descriptive and Inferential Statistics on All Reasonable Specifications.
https://doi.org/10.2139/ssrn.2694998

Uri Simonsohn, Joseph P. Simmons, and Leif D. Nelson. 2020. Specification
curve analysis. Nature Human Behaviour 4, 11 (Nov. 2020), 1208-1214. https:
//doi.org/10.1038/s41562-020-0912-z

Gary Smith. 2022. Full moons and forking paths. Significance
19, 4 (2022), 32-35. https://doi.org/10.1111/1740-9713.01672 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1740-9713.01672.

Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel. 2016. In-
creasing Transparency Through a Multiverse Analysis. Perspectives on Psycholog-
ical Science 11, 5 (Sept. 2016), 702-712. https://doi.org/10.1177/1745691616658637
Publisher: SAGE Publications Inc.

Wolf Vanpaemel, Sara Steegen, Francis Tuerlinckx, and Andrew Gelman. 2016.
multiverse analysis. (May 2016). https://osf.i0/zj68b/ Publisher: OSF.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44, 10 (Oct. 2018),
951-976. https://doi.org/10.1109/TSE.2017.2734091 Conference Name: IEEE
Transactions on Software Engineering.

CHI 23, April 23-28, 2023, Hamburg, Germany

CHI 23, April 23-28, 2023, Hamburg, Germany

A INITIAL CORRESPONDENCES WITH
MULTIVERSE EXPERTS

A.1 Interviews with Two Multiverse
Practitioners

To identify specific challenges in authoring and conducting multi-
verse analyses, we first conduct in-depth interview studies with two
researchers who have recently authored multiverse analyses. We
found these researchers through our collaboration networks. Nei-
ther relied on existing multiverse tools. Instead, they wrote custom
scripts that generated each universe script. During the interviews,
which lasted for approximately two hours each, the researchers
walked us through their analyses, including their scripts, findings,
and any historical artifacts from their git repository histories. With-
out being prompted, both brought up how challenging finding and
propagating bug fixes is for them.

We learned that the researchers approach authoring multiverse
analyses in a bottom-up, iterative fashion. They focus on a few key
decisions and options, consult their peers and supervisors, and then
add additional decisions and options based on their team’s input.
This iterative nature requires keeping track of which combinations
of decision options were previously considered and how, if at all, the
results have altered since changing or adding decisions and decision
options. The same process applies when the researchers encounter
and fix bugs. They must identify bugs, fix decision options that
introduce the bugs, and then re-run their multiverse analyses to
see how the bugs impact their results.

This led to an understanding that multiverse debugging is a key
challenge and that resolving difficulties surrounding this process
could make it easier to author multiverse analyses more generally.

A.2 Additional Correspondences with
Experienced Multiverse Tool Developers

We cross-examined our observed challenges and insights in de-
bugging with two independent, experienced researchers who have
authored multiverse analyses and developed multiverse analysis
tools. We corresponded with these researchers via email.

Both researchers corroborated the importance of starting with
a single universe and then propagating changes to the rest of the
universes: “I may look at a single universe. Then I apply the solution
to all affected paths. Currently, this can only be achieved by modify-
ing the multiverse specification.” The other researcher had a similar
debugging process: “I always debug by looking at individual universe
scripts that instantiate a particular set of decisions that I think might
be involved in the error”. They also mentioned how debugging mul-
tiverse analyses is like debugging a single universe but with “the
added difficulty of figuring out why the bugs come up in a particular
analysis”. Finally, one tool developer also highlighted the additional
steps needed to pinpoint an error: “I often read the error messages
and pick a specific error to focus on. Then I examine all paths that
lead to a specific error to distill commonality.”

B DECISION COVER ALGORITHM

The DECISION COVER algorithm is an iterative loop of sampling
a universe from the multiverse and reducing the multiverse by
removing all universes that contain decision options of universes

Ken Gu, Eunice Jun, and Tim Althoff

Algorithm 1: Decision Cover

Input: S = {u; | i = 1...n} (set of universes in the entire
multiverse), D = {d; | j =1... m} (set of decision
options in the multiverse) ; // Each universe u;
is represented by a unique set of decision
options Dy, ¢ D

Initialize M < 0

while S # 0 do

u~Uniform(S)M «— MU{u} T « {u} forov € S do
if D, N D, # 0 then
| T« TuU({o}
end
end
S S\T
end
return M

sampled so far. Algorithm algorithm 1 summarizes the DECISION
COVER algorithm. We start with the set of all universes. Until this
set is empty, a universe is randomly sampled and all universes that
share any decision option will be removed from this set. We take
the set of sampled universes as the reduced set of universes to run.

C ALGORITHM FOR UNIVERSE-TO-
MULTIVERSE-SPECIFICATION
DIFFS

C.1 Boba Background

There are two main ways to specify decisions in the template file:
placeholder variables for decision options that can be placed in-line
and code blocks for decision options that involve multiple lines of
code. Placeholder variables can be placed anywhere in the template
file. Users specify the placeholder decision name and its alternative
options. During compilation, Boba removes the placeholder identi-
fier and replaces it with one of its alternative values. In Figure 24,
the cutoff and brm_family decisions are defined with placeholder
variables. Meanwhile, a decision block is used to specify multiple
versions of a code block that act as alternative decision options
for one analytical decision. For example, in Figure 2A, the Model
decision block consists of two alternative code blocks, representing
an option for a frequentist model and an option for a bayesian model.
When compiling the template file, Boba will instantiate only one
code block corresponding to a decision in a universe.

C.2 Algorithm

MULTIVERSE DEBUGGER compares abstract syntax trees (ASTs) and
lines of code of the edited and unedited universe. ASTs provide
the granularity needed to identify decision options and potential
changes to these options that are specified in-line (Boba placeholder
variables) in the new universe. Meanwhile, comparing code at the
line granularity helps locate decision options specified by multiple
lines of code (Boba code blocks). Furthermore, comparing lines
also helps map universe code blocks to the multiverse specification
blocks.

Understanding and Supporting Debugging Workflows in Multiverse Analysis

We use information from the compilation process to know where
in the unedited old universe the Boba variables are located and the
split points between Boba code blocks. In short, we have a mapping
between the unedited universe and the multiverse specification.
We then find where in the new edited universe the locations of
Boba variables are via AST matching and locations of Boba code
blocks via line matching. Through the mapping between old and
new universe, we can then map changes in the new universe all
the way back to the multiverse specification.

To pinpoint code changes in the universe that correspond to
decision options specified inline in the multiverse specification, we
match the ASTs of the unedited and edited universes. Matching
ASTs provides additional granularity than line difference algorithms
and enables direct mappings between code that corresponds to
matched subtrees in the AST. We use gumtree [22]to find code in
the new universe that corresponds to Boba variables. If changes
exist, these are mapped to the multiverse specification.

We use the Python difflib [2] library’s mdiff function to match
the start of code blocks between the old and new universe files. For
each line in the old universe if it is matched with the new universe
and it is the start of the block boundary, we add the new universe
line as the start of the corresponding Boba block. If the line is
deleted and it is at the boundary of the Boba block, we add the next
line in the new universe. Finally, if a new line is inserted and it is
at the start of a new block, we always default to including it at the
start of a new block. With our initial multiverse specification and
unedited universe mapping, we can propagate edits in the universe
back to the multiverse specification.

The UNIVERSE-TO-MULTIVERSE DIFF algorithm based on gumtree’s
AST matching algorithm is best suited for small to medium edit
changes. As these edits are common in most of bug fixes, gumtree
is an adequate choice.

D PROCESS FOR FINDING BUGS FOR THE
LAB STUDY

We gathered two multiverses from which we created buggy R and
Python versions. The first multiverse, HURRICANE, is authored by
Simonsohn et al. [53] and challenges the reported analysis in a previ-
ous study [28]. The study explored whether hurricanes with female
names resulted in more deaths. The second multiverse, READING, is
an example from Boba [38]. READING is based on how researchers
of a published paper [36], on whether different web layouts result
in faster reading speeds, might construct a multiverse from their
analysis.

To introduce realistic bugs, we first identified common bugs
encountered during typical statistical analyses. We searched Stack
Overflow [6] to find errors. For R, we searched Stack Overflow with
tags R and keyword error to find relevant posts. Similarly, for Python,
we searched with tags Python, pandas[4], and statsmodels[3]
and the keyword error to find relevant posts. In addition to Stack
Overflow, we consulted an online statistics blog with consolidated
lists of Python [14] and R errors [15].

This resulted in errors that encompass data parsing, data splitting,
and model specification. The R version of HURRICANE included 5
errors. One was a syntax error, one was a logical one-off error, two
more errors were errors that resulted from poor data processing,

CHI 23, April 23-28, 2023, Hamburg, Germany

and the last error was a model fit error due to a poorly specified
model formula. The Python version contained 3 errors: the same
one-off error, a data processing error, and the same model fit error.

For the READING multiverse, the R version involved 3 errors: two
errors related to poor data/model specification, and a third error
with misspecified data transformation. The Python version had 3
errors as well: an error as a result of using the wrong model, an
error with the wrong syntax for data filtering, and a third error
from parsing the data improperly. We include all lab study materials
in our supplemental material.

